scispace - formally typeset
Journal ArticleDOI

Microfluidic methods for generating continuous droplet streams

TLDR
In this article, a review of microfluidic methods for synthesizing uniform streams of droplets and bubbles, focusing on those that utilize pressure-driven flows, is presented, and the results in the context of physical mechanisms for droplet breakup and simple theoretical models that have been proposed.
Abstract
Microfluidic technologies have emerged recently as a promising new route for the fabrication of uniform emulsions. In this paper, we review microfluidic methods for synthesizing uniform streams of droplets and bubbles, focusing on those that utilize pressure-driven flows. Three categories of microfluidic geometries are discussed, including co-flowing streams, cross-flowing streams, and flow focusing devices. In each category we summarize observations that have been reported to date in experiments and numerical simulations. We describe these results in the context of physical mechanisms for droplet breakup, and simple theoretical models that have been proposed. Applications of droplets in microfluidic devices are briefly reviewed.

read more

Citations
More filters
Journal ArticleDOI

Emerging Droplet Microfluidics

TL;DR: The purpose of this review is to convey the fundamentals of droplet microfluidics, a critical analysis on its current status and challenges, and opinions on its future development.
Journal ArticleDOI

Microdroplets in microfluidics: an evolving platform for discoveries in chemistry and biology

TL;DR: Examples are presented to show how compartmentalization, monodispersity, single-molecule sensitivity, and high throughput have been exploited in experiments that would have been extremely difficult outside the microfluidics platform.
Journal ArticleDOI

Droplet based microfluidics

TL;DR: This paper will review available drop generation and manipulation techniques in droplet based microfluidics to identify and shed light on similarities and underlying physical principles.
Journal ArticleDOI

Dynamics of microfluidic droplets.

TL;DR: This critical review discusses the current understanding of the formation, transport, and merging of drops in microfluidics and focuses on the physical ingredients which determine the flow of Drops in microchannels.
Journal ArticleDOI

Passive and active droplet generation with microfluidics: a review

TL;DR: This review of passive approaches focuses on the characteristics and mechanisms of breakup modes of droplet generation occurring in microfluidic cross-flow, co- flow, flow-focusing, and step emulsification configurations.
References
More filters
Journal ArticleDOI

Rapid prototyping of microfluidic systems in poly(dimethylsiloxane)

TL;DR: A procedure that makes it possible to design and fabricate microfluidic systems in an elastomeric material poly(dimethylsiloxane) (PDMS) in less than 24 h by fabricating a miniaturized capillary electrophoresis system is described.
Journal ArticleDOI

Microfluidics: Fluid physics at the nanoliter scale

TL;DR: A review of the physics of small volumes (nanoliters) of fluids is presented, as parametrized by a series of dimensionless numbers expressing the relative importance of various physical phenomena as mentioned in this paper.
Journal ArticleDOI

Engineering flows in small devices

TL;DR: An overview of flows in microdevices with focus on electrokinetics, mixing and dispersion, and multiphase flows is provided, highlighting topics important for the description of the fluid dynamics: driving forces, geometry, and the chemical characteristics of surfaces.
Book

Fundamentals of microfabrication

TL;DR: The second edition of the Fundamentals of Microfabrication as discussed by the authors provides an in-depth coverage of the science of miniaturization, its methods, and materials, from the fundamentals of lithography through bonding and packaging to quantum structures and molecular engineering.
Journal ArticleDOI

Formation of dispersions using “flow focusing” in microchannels

TL;DR: In this paper, a flow-focusing geometry is integrated into a microfluidic device and used to study drop formation in liquid-liquid systems, where both monodisperse and polydisperse emulsions can be produced.
Related Papers (5)