scispace - formally typeset
Journal ArticleDOI

Molecular Mechanisms of Mammalian DNA Repair and the DNA Damage Checkpoints

TLDR
The molecular mechanisms of DNA repair and the DNA damage checkpoints in mammalian cells are analyzed and apoptosis, which eliminates heavily damaged or seriously deregulated cells, is analyzed.
Abstract
DNA damage is a relatively common event in the life of a cell and may lead to mutation, cancer, and cellular or organismic death. Damage to DNA induces several cellular responses that enable the cell either to eliminate or cope with the damage or to activate a programmed cell death process, presumably to eliminate cells with potentially catastrophic mutations. These DNA damage response reactions include: (a) removal of DNA damage and restoration of the continuity of the DNA duplex; (b) activation of a DNA damage checkpoint, which arrests cell cycle progression so as to allow for repair and prevention of the transmission of damaged or incompletely replicated chromosomes; (c) transcriptional response, which causes changes in the transcription profile that may be beneficial to the cell; and (d) apoptosis, which eliminates heavily damaged or seriously deregulated cells. DNA repair mechanisms include direct repair, base excision repair, nucleotide excision repair, double-strand break repair, and cross-link repair. The DNA damage checkpoints employ damage sensor proteins, such as ATM, ATR, the Rad17-RFC complex, and the 9-1-1 complex, to detect DNA damage and to initiate signal transduction cascades that employ Chk1 and Chk2 Ser/Thr kinases and Cdc25 phosphatases. The signal transducers activate p53 and inactivate cyclin-dependent kinases to inhibit cell cycle progression from G1 to S (the G1/S checkpoint), DNA replication (the intra-S checkpoint), or G2 to mitosis (the G2/M checkpoint). In this review the molecular mechanisms of DNA repair and the DNA damage checkpoints in mammalian cells are analyzed.

read more

Citations
More filters
Journal ArticleDOI

Glioma stem cells promote radioresistance by preferential activation of the DNA damage response

TL;DR: This work shows that cancer stem cells contribute to glioma radioresistance through preferential activation of the DNA damage checkpoint response and an increase in DNA repair capacity, and suggests that CD133-positive tumour cells could be the source of tumour recurrence after radiation.
Journal ArticleDOI

Molecular mechanisms of cisplatin resistance

TL;DR: A systematic discussion of the mechanisms that account for the cisplatin-resistant phenotype of tumor cells are described and the development of chemosensitization strategies constitute a goal with important clinical implications.
Journal ArticleDOI

PCNA, the Maestro of the Replication Fork

TL;DR: Proliferating cell nuclear antigen -a cofactor of DNA polymerases that encircles DNA-orchestrates several of these functions by recruiting crucial players to the replication fork, indicating that these interactions do not occur simultaneously during replication.
Journal ArticleDOI

The DNA damage pathway regulates innate immune system ligands of the NKG2D receptor

TL;DR: The DNA damage response, previously shown to arrest the cell cycle and enhance DNA repair functions, or to trigger apoptosis, may also participate in alerting the immune system to the presence of potentially dangerous cells.
References
More filters
Journal ArticleDOI

The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases

TL;DR: In this article, an improved two-hybrid system was employed to isolate human genes encoding Cdk-interacting proteins (Cips) and found that CIP1 is a potent, tight-binding inhibitor of Cdks and can inhibit the phosphorylation of Rb by cyclin A-Cdk2.
Journal ArticleDOI

DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation

TL;DR: It is shown that ATM is held inactive in unirradiated cells as a dimer or higher-order multimer, with the kinase domain bound to a region surrounding serine 1981 that is contained within the previously described ‘FAT’ domain.
Journal ArticleDOI

The DNA damage response: putting checkpoints in perspective

TL;DR: The inability to repair DNA damage properly in mammals leads to various disorders and enhanced rates of tumour development, and this work has shown that direct activation of DNA repair networks is needed to correct this problem.
Journal ArticleDOI

A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia

TL;DR: Three participants are identified (AT gene(s), p53, and GADD45) in a signal transduction pathway that controls cell cycle arrest following DNA damage; abnormalities in this pathway probably contribute to tumor development.
Journal ArticleDOI

Checkpoints: controls that ensure the order of cell cycle events

TL;DR: It appears that some checkpoints are eliminated during the early embryonic development of some organisms; this fact may pose special problems for the fidelity of embryonic cell division.
Related Papers (5)