scispace - formally typeset
Open AccessJournal ArticleDOI

Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection.

TLDR
It is shown that neutralization level is highly predictive of immune protection, and an evidence-based model of SARS-CoV-2 immune protection that will assist in developing vaccine strategies to control the future trajectory of the pandemic is provided.
Abstract
Predictive models of immune protection from COVID-19 are urgently needed to identify correlates of protection to assist in the future deployment of vaccines. To address this, we analyzed the relationship between in vitro neutralization levels and the observed protection from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection using data from seven current vaccines and from convalescent cohorts. We estimated the neutralization level for 50% protection against detectable SARS-CoV-2 infection to be 20.2% of the mean convalescent level (95% confidence interval (CI) = 14.4–28.4%). The estimated neutralization level required for 50% protection from severe infection was significantly lower (3% of the mean convalescent level; 95% CI = 0.7–13%, P = 0.0004). Modeling of the decay of the neutralization titer over the first 250 d after immunization predicts that a significant loss in protection from SARS-CoV-2 infection will occur, although protection from severe disease should be largely retained. Neutralization titers against some SARS-CoV-2 variants of concern are reduced compared with the vaccine strain, and our model predicts the relationship between neutralization and efficacy against viral variants. Here, we show that neutralization level is highly predictive of immune protection, and provide an evidence-based model of SARS-CoV-2 immune protection that will assist in developing vaccine strategies to control the future trajectory of the pandemic. Estimates of the levels of neutralizing antibodies necessary for protection against symptomatic SARS-CoV-2 or severe COVID-19 are a fraction of the mean level in convalescent serum and will be useful in guiding vaccine rollouts.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Count on us: T cells in SARS-CoV-2 infection and vaccination

TL;DR: In this article , the authors discuss epitope-specific CD8+ and CD4+ T cell responses toward SARS-CoV-2 infection and vaccination, their subsequent persistence into long-term memory, and ongoing work to determine their role in limiting disease severity.
Journal ArticleDOI

Third dose of the BNT162b2 vaccine in heart transplant recipients: Immunogenicity and clinical experience

TL;DR: In this article , the safety and immunogenicity of a third, booster, dose of the Pfizer BNT162b2 vaccine in heart transplant (HT) patients were investigated, and the third dose was associated with a low rate of adverse events, mostly mild pain at the injection site.
Journal ArticleDOI

The glycosylation in SARS-CoV-2 and its receptor ACE2.

TL;DR: In this paper, the authors reviewed the detections, substrates, biological functions of the glycosylation in SARS-CoV-2 proteins as well as the human receptor ACE2.
Journal ArticleDOI

Durability of Antibody Levels After Vaccination With mRNA SARS-CoV-2 Vaccine in Individuals With or Without Prior Infection.

TL;DR: The authors examined antibody durability in individuals who received an mRNA SARS-CoV-2 vaccine with prior SARS CoV2 infection vs those without infection and found that the antibody durability was significantly worse for those who received the vaccine without infection.
Journal ArticleDOI

Population antibody responses following COVID-19 vaccination in 212,102 individuals

TL;DR: In this article , the authors analyse data from 212,102 vaccinated individuals within the REACT-2 programme in England, which uses self-administered lateral flow antibody tests in sequential cross-sectional community samples; 71,923 (33.9%) received at least one dose of BNT162b2 vaccine and 139,067 (65.6%) received ChAdOx1.
References
More filters
Journal ArticleDOI

Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK.

Merryn Voysey, +81 more
- 09 Jan 2021 - 
TL;DR: ChAdOx1 nCoV-19 has an acceptable safety profile and has been found to be efficacious against symptomatic COVID-19 in this interim analysis of ongoing clinical trials.
Related Papers (5)

Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK.

Merryn Voysey, +81 more
- 09 Jan 2021 -