scispace - formally typeset
Open AccessJournal ArticleDOI

Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection.

TLDR
It is shown that neutralization level is highly predictive of immune protection, and an evidence-based model of SARS-CoV-2 immune protection that will assist in developing vaccine strategies to control the future trajectory of the pandemic is provided.
Abstract
Predictive models of immune protection from COVID-19 are urgently needed to identify correlates of protection to assist in the future deployment of vaccines. To address this, we analyzed the relationship between in vitro neutralization levels and the observed protection from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection using data from seven current vaccines and from convalescent cohorts. We estimated the neutralization level for 50% protection against detectable SARS-CoV-2 infection to be 20.2% of the mean convalescent level (95% confidence interval (CI) = 14.4–28.4%). The estimated neutralization level required for 50% protection from severe infection was significantly lower (3% of the mean convalescent level; 95% CI = 0.7–13%, P = 0.0004). Modeling of the decay of the neutralization titer over the first 250 d after immunization predicts that a significant loss in protection from SARS-CoV-2 infection will occur, although protection from severe disease should be largely retained. Neutralization titers against some SARS-CoV-2 variants of concern are reduced compared with the vaccine strain, and our model predicts the relationship between neutralization and efficacy against viral variants. Here, we show that neutralization level is highly predictive of immune protection, and provide an evidence-based model of SARS-CoV-2 immune protection that will assist in developing vaccine strategies to control the future trajectory of the pandemic. Estimates of the levels of neutralizing antibodies necessary for protection against symptomatic SARS-CoV-2 or severe COVID-19 are a fraction of the mean level in convalescent serum and will be useful in guiding vaccine rollouts.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Molecular characteristics, immune evasion, and impact of SARS-CoV-2 variants

TL;DR: This review summarized the molecular characteristics, immune evasion, and impacts of the SARS-CoV-2 variants and focused on the parallel comparison of different variants in mutational profile, transmissibility and tropism alteration, treatment effectiveness, and clinical manifestations, in order to provide a comprehensive landscape for SARs-Cov-2 variant research.
Journal ArticleDOI

Evaluation of safety and immunogenicity of receptor-binding domain-based COVID-19 vaccine (Corbevax) to select the optimum formulation in open-label, multicentre, and randomised phase-1/2 and phase-2 clinical trials

TL;DR: A randomised Phase-1/2 trial followed by a Phase-2 trial were conducted to assess the safety and immunogenicity of the COVID-19 vaccine Corbevax and select to an optimum formulation as discussed by the authors .
Journal ArticleDOI

SARS-CoV-2 Antibody Response to 2 or 3 Doses of the BNT162b2 Vaccine in Patients Treated With Anticancer Agents

TL;DR: In this article , a prospective observational cohort study was conducted between February 1 and May 31, 2021 to assess the immune humoral response to 2 or 3 doses of BNT162b2 (BioNTech; Pfizer) vaccine in patients treated with anticancer agents.
Journal ArticleDOI

Omicron-specific mRNA vaccination alone and as a heterologous booster against SARS-CoV-2

TL;DR: In this paper , an Omicron-specific lipid nanoparticle (LNP) mRNA vaccine candidate was generated and tested in animals, both alone and as a heterologous booster to WT mRNA vaccine.
References
More filters
Journal ArticleDOI

Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK.

Merryn Voysey, +81 more
- 09 Jan 2021 - 
TL;DR: ChAdOx1 nCoV-19 has an acceptable safety profile and has been found to be efficacious against symptomatic COVID-19 in this interim analysis of ongoing clinical trials.
Related Papers (5)

Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK.

Merryn Voysey, +81 more
- 09 Jan 2021 -