scispace - formally typeset
Journal ArticleDOI

Notch/gamma-secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cells.

TLDR
This work shows a rapid, massive conversion of proliferative crypt cells into post-mitotic goblet cells after conditional removal of the common Notch pathway transcription factor CSL/RBP-J and indicates that γ-secretase inhibitors, developed for Alzheimer's disease, might be of therapeutic benefit in colorectal neoplastic disease.
Abstract
The self-renewing epithelium of the small intestine is ordered into stem/progenitor crypt compartments and differentiated villus compartments. Recent evidence indicates that the Wnt cascade is the dominant force in controlling cell fate along the crypt-villus axis. Here we show a rapid, massive conversion of proliferative crypt cells into post-mitotic goblet cells after conditional removal of the common Notch pathway transcription factor CSL/RBP-J. We obtained a similar phenotype by blocking the Notch cascade with a gamma-secretase inhibitor. The inhibitor also induced goblet cell differentiation in adenomas in mice carrying a mutation of the Apc tumour suppressor gene. Thus, maintenance of undifferentiated, proliferative cells in crypts and adenomas requires the concerted activation of the Notch and Wnt cascades. Our data indicate that gamma-secretase inhibitors, developed for Alzheimer's disease, might be of therapeutic benefit in colorectal neoplastic disease.

read more

Citations
More filters
Journal ArticleDOI

Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche.

TL;DR: It is concluded that intestinal crypt–villus units are self-organizing structures, which can be built from a single stem cell in the absence of a non-epithelial cellular niche.
Journal ArticleDOI

Wnt/beta-catenin signaling in development and disease.

TL;DR: A remarkable interdisciplinary effort has unraveled the WNT (Wingless and INT-1) signal transduction cascade over the last two decades, finding that Germline mutations in the Wnt pathway cause several hereditary diseases, and somatic mutations are associated with cancer of the intestine and a variety of other tissues.
Journal ArticleDOI

The Canonical Notch Signaling Pathway: Unfolding the Activation Mechanism

TL;DR: This Review highlights recent studies in Notch signaling that reveal new molecular details about the regulation of ligand-mediated receptor activation, receptor proteolysis, and target selection.
Journal ArticleDOI

Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett's epithelium.

TL;DR: A technology that can be used to study infected, inflammatory, or neoplastic tissues from the human gastrointestinal tract is developed that might have applications in regenerative biology through ex vivo expansion of the intestinal epithelia.
Journal ArticleDOI

Notch signalling: a simple pathway becomes complex

TL;DR: Although the intracellular transduction of the Notch signal is remarkably simple, with no secondary messengers, this pathway functions in an enormous diversity of developmental processes and its dysfunction is implicated in many cancers.
References
More filters
Journal ArticleDOI

Notch Signaling: Cell Fate Control and Signal Integration in Development

TL;DR: Notch signaling defines an evolutionarily ancient cell interaction mechanism, which plays a fundamental role in metazoan development, providing a general developmental tool to influence organ formation and morphogenesis.
Journal ArticleDOI

A presenilin-1-dependent gamma-secretase-like protease mediates release of Notch intracellular domain.

TL;DR: It is reported that, in mammalian cells, PS1 deficiency also reduces the proteolytic release of NICD from a truncated Notch construct, thus identifying the specific biochemical step of the Notch signalling pathway that is affected by PS1.
Journal ArticleDOI

Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4.

TL;DR: The role of Tcf-4 in colon cancer was investigated in this paper, where the authors found that Tcf7/2//- mice die shortly after birth from colon cancer.
Related Papers (5)