scispace - formally typeset
Open AccessJournal ArticleDOI

Protocol for the development of the Master Chemical Mechanism, MCM v3 (Part A): tropospheric degradation of non-aromatic volatile organic compounds

Reads0
Chats0
TLDR
In this paper, an update to the previous protocol is presented, which has been used to define degradation schemes for 107 non-aromatic VOC as part of version 3 of the Master Chemical Mechanism (MCM v3).
Abstract
. Kinetic and mechanistic data relevant to the tropospheric degradation of volatile organic compounds (VOC), and the production of secondary pollutants, have previously been used to define a protocol which underpinned the construction of a near-explicit Master Chemical Mechanism. In this paper, an update to the previous protocol is presented, which has been used to define degradation schemes for 107 non-aromatic VOC as part of version 3 of the Master Chemical Mechanism (MCM v3). The treatment of 18 aromatic VOC is described in a companion paper. The protocol is divided into a series of subsections describing initiation reactions, the reactions of the radical intermediates and the further degradation of first and subsequent generation products. Emphasis is placed on updating the previous information, and outlining the methodology which is specifically applicable to VOC not considered previously (e.g. a - and b -pinene). The present protocol aims to take into consideration work available in the open literature up to the beginning of 2001, and some other studies known by the authors which were under review at the time. Application of MCM v3 in appropriate box models indicates that the representation of isoprene degradation provides a good description of the speciated distribution of oxygenated organic products observed in reported field studies where isoprene was the dominant emitted hydrocarbon, and that the a -pinene degradation chemistry provides a good description of the time dependence of key gas phase species in a -pinene/NOX photo-oxidation experiments carried out in the European Photoreactor (EUPHORE). Photochemical Ozone Creation Potentials (POCP) have been calculated for the 106 non-aromatic non-methane VOC in MCM v3 for idealised conditions appropriate to north-west Europe, using a photochemical trajectory model. The POCP values provide a measure of the relative ozone forming abilities of the VOC. Where applicable, the values are compared with those calculated with previous versions of the MCM.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Organic aerosol and global climate modelling: a review

TL;DR: In this article, the authors reviewed existing knowledge with regard to organic aerosol (OA) of importance for global climate modelling and defined critical gaps needed to reduce the involved uncertainties, and synthesized the information to provide a continuous analysis of the flow from the emitted material to the atmosphere up to the point of the climate impact of the produced organic aerosols.
Journal ArticleDOI

Atmospheric aerosols: composition, transformation, climate and health effects.

TL;DR: The current state of knowledge, major open questions, and research perspectives on the properties and interactions of atmospheric aerosols and their effects on climate and human health are outlined.
Journal ArticleDOI

Formation of Urban Fine Particulate Matter

TL;DR: Air pollutants consist of a complex combination of gases and particulate matter, which is emitted directly into the atmosphere or formed in the atmosphere through gas-to-particle conversion (secondary) (Figure 1).
References
More filters
Journal ArticleDOI

A global model of natural volatile organic compound emissions

TL;DR: In this article, the authors developed a global model to estimate emissions of volatile organic compounds from natural sources (NVOC), which has a highly resolved spatial grid and generates hourly average emission estimates.

Chemical kinetics and photochemical data for use in stratospheric modeling

TL;DR: As part of a series of evaluated sets, rate constants and photochemical cross sections compiled by the NASA Panel for Data Evaluation are provided in this paper, with particular emphasis on the ozone layer and its possible perturbation by anthropogenic and natural phenomena.
Journal ArticleDOI

Atmospheric chemistry of VOCs and NOx

TL;DR: The present status of knowledge of the gas phase reactions of inorganic Ox, Hox and NOx species and of selected classes of volatile organic compounds (VOCs) and their degradation products in the troposphere is discussed in this paper.
Book

Chemistry of the Upper and Lower Atmosphere: Theory, Experiments, and Applications

TL;DR: A detailed overview of the chemistry of Polluted and Remote Atmospheres can be found in this paper, where the OZIPR model is used to simulate the formation of gases and particles in the Troposphere.
Journal ArticleDOI

Gas-Phase Tropospheric Chemistry of Volatile Organic Compounds: 1. Alkanes and Alkenes

TL;DR: The most recent review and evaluation of Atkinson [J. Phys. Chem. Ref. Data, 26, No. 3 (1997) and as mentioned in this paper concerning the gas phase reactions of alkanes and alkenes (including isoprene and monoterpenes) leading to their first generation products are reviewed and evaluated for tropospheric conditions.
Related Papers (5)