scispace - formally typeset
Open AccessJournal ArticleDOI

Quantitative susceptibility mapping: Report from the 2016 reconstruction challenge.

Reads0
Chats0
TLDR
The aim of the 2016 quantitative susceptibility mapping (QSM) reconstruction challenge was to test the ability of various QSM algorithms to recover the underlying susceptibility from phase data faithfully.
Abstract
Purpose The aim of the 2016 quantitative susceptibility mapping (QSM) reconstruction challenge was to test the ability of various QSM algorithms to recover the underlying susceptibility from phase data faithfully. Methods Gradient-echo images of a healthy volunteer acquired at 3T in a single orientation with 1.06 mm isotropic resolution. A reference susceptibility map was provided, which was computed using the susceptibility tensor imaging algorithm on data acquired at 12 head orientations. Susceptibility maps calculated from the single orientation data were compared against the reference susceptibility map. Deviations were quantified using the following metrics: root mean squared error (RMSE), structure similarity index (SSIM), high-frequency error norm (HFEN), and the error in selected white and gray matter regions. Results Twenty-seven submissions were evaluated. Most of the best scoring approaches estimated the spatial frequency content in the ill-conditioned domain of the dipole kernel using compressed sensing strategies. The top 10 maps in each category had similar error metrics but substantially different visual appearance. Conclusion Because QSM algorithms were optimized to minimize error metrics, the resulting susceptibility maps suffered from over-smoothing and conspicuity loss in fine features such as vessels. As such, the challenge highlighted the need for better numerical image quality criteria. Magn Reson Med, 2017. © 2017 International Society for Magnetic Resonance in Medicine.

read more

Citations
More filters
Journal ArticleDOI

Quantitative Susceptibility Mapping using Deep Neural Network: QSMnet

TL;DR: An MRI reconstruction algorithm, which is referred to as quantitative susceptibility mapping (QSM), has been developed using a deep neural network in order to perform dipole deconvolution, which restores magnetic susceptibility source from an MRI field map.
Journal ArticleDOI

Iron, Myelin, and the Brain: Neuroimaging Meets Neurobiology.

TL;DR: Interdisciplinary collaborations will be key to advance beyond simple correlative analyses in the biological interpretation of MRI data and to gain deeper insights into key factors leading to iron accumulation and/or redistribution associated with neurodegeneration.
Journal ArticleDOI

DeepQSM - using deep learning to solve the dipole inversion for quantitative susceptibility mapping.

TL;DR: DeepQSM can invert the magnetic dipole kernel convolution and delivers robust solutions to this ill-posed problem, enabling identification of deep brain substructures and provide information on their respective magnetic tissue properties.
Journal ArticleDOI

Relationship between cortical iron and tau aggregation in Alzheimer’s disease

TL;DR: Using MR-based quantitative susceptibility mapping and tau-PET, Spotorno et al. provide in vivo evidence for an association between iron deposition and t Tau accumulation in subjects on the Alzheimer's disease continuum.
References
More filters
Journal ArticleDOI

Image quality assessment: from error visibility to structural similarity

TL;DR: In this article, a structural similarity index is proposed for image quality assessment based on the degradation of structural information, which can be applied to both subjective ratings and objective methods on a database of images compressed with JPEG and JPEG2000.
Book

Distributed Optimization and Statistical Learning Via the Alternating Direction Method of Multipliers

TL;DR: It is argued that the alternating direction method of multipliers is well suited to distributed convex optimization, and in particular to large-scale problems arising in statistics, machine learning, and related areas.
Journal ArticleDOI

Fast robust automated brain extraction

TL;DR: An automated method for segmenting magnetic resonance head images into brain and non‐brain has been developed and described and examples of results and the results of extensive quantitative testing against “gold‐standard” hand segmentations, and two other popular automated methods.
Journal ArticleDOI

Sparse MRI: The application of compressed sensing for rapid MR imaging.

TL;DR: Practical incoherent undersampling schemes are developed and analyzed by means of their aliasing interference and demonstrate improved spatial resolution and accelerated acquisition for multislice fast spin‐echo brain imaging and 3D contrast enhanced angiography.
PatentDOI

SENSE: Sensitivity Encoding for fast MRI

TL;DR: The problem of image reconstruction from sensitivity encoded data is formulated in a general fashion and solved for arbitrary coil configurations and k‐space sampling patterns and special attention is given to the currently most practical case, namely, sampling a common Cartesian grid with reduced density.
Related Papers (5)