scispace - formally typeset
Open AccessJournal ArticleDOI

Recent Progress on Localized Field Enhanced Two-dimensional Material Photodetectors from Ultraviolet—Visible to Infrared

Reads0
Chats0
TLDR
These localized fields are proved to effectively promote the detection ability of 2DPDs by suppressing background noise, enhancing optical absorption, improving electron-hole separation efficiency, amplifying photoelectric gain and/or extending the detection range.
Abstract
Two-dimensional (2D) materials have drawn tremendous attention in recent years. Being atomically thin, stacked with van der Waals force and free of surface chemical dangling bonds, 2D materials exhibit several distinct physical properties. To date, 2D materials include graphene, transition metal dichalcogenides (TMDS), black phosphorus, black P(1-x) Asx , boron nitride (BN) and so forth. Owing to their various bandgaps, 2D materials have been utilized for photonics and optoelectronics. Photodetectors based on 2D materials with different structures and detection mechanisms have been established and present excellent performance. In this Review, localized field enhanced 2D material photodetectors (2DPDs) are introduced with sensitivity over the spectrum from ultraviolet, visible to infrared in the sight of the influence of device structure on photodetector performance instead of directly illustrating the detection mechanisms. Six types of localized fields are summarized. They are: ferroelectric field, photogating electric field, floating gate induced electrostatic field, interlayer built-in field, localized optical field, and photo-induced temperature gradient field, respectively. These localized fields are proved to effectively promote the detection ability of 2DPDs by suppressing background noise, enhancing optical absorption, improving electron-hole separation efficiency, amplifying photoelectric gain and/or extending the detection range.

read more

Citations
More filters
Journal ArticleDOI

Photogating in Low Dimensional Photodetectors

TL;DR: The general photogating may enable simultaneous high gain and high bandwidth, paving the way to explore novel high‐performance photodetectors.
Journal ArticleDOI

Doping engineering and functionalization of two-dimensional metal chalcogenides

TL;DR: This review highlights the recent progress in the doping engineering of 2D MXs, covering that enabled by substitution, exterior charge transfer, intercalation and the electrostatic doping mechanism.
Journal ArticleDOI

2D library beyond graphene and transition metal dichalcogenides: a focus on photodetection

TL;DR: A comprehensive review on the state-of-the-art photodetections of two-dimensional materials beyond graphene and TMDs is given and the current research status of this area is concluded.
References
More filters
Journal ArticleDOI

Electric Field Effect in Atomically Thin Carbon Films

TL;DR: Monocrystalline graphitic films are found to be a two-dimensional semimetal with a tiny overlap between valence and conductance bands and they exhibit a strong ambipolar electric field effect.
Journal ArticleDOI

Electronics and optoelectronics of two-dimensional transition metal dichalcogenides.

TL;DR: This work reviews the historical development of Transition metal dichalcogenides, methods for preparing atomically thin layers, their electronic and optical properties, and prospects for future advances in electronics and optoelectronics.
Journal ArticleDOI

Atomically thin MoS2: a new direct-gap semiconductor

TL;DR: The electronic properties of ultrathin crystals of molybdenum disulfide consisting of N=1,2,…,6 S-Mo-S monolayers have been investigated by optical spectroscopy and the effect of quantum confinement on the material's electronic structure is traced.
Journal ArticleDOI

Van der Waals heterostructures

TL;DR: With steady improvement in fabrication techniques and using graphene’s springboard, van der Waals heterostructures should develop into a large field of their own.
Journal ArticleDOI

The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets

TL;DR: This Review describes how the tunable electronic structure of TMDs makes them attractive for a variety of applications, as well as electrically active materials in opto-electronics.
Related Papers (5)