scispace - formally typeset
Open AccessJournal ArticleDOI

Serum neutralization of SARS-CoV-2 Omicron sublineages BA.1 and BA.2 in patients receiving monoclonal antibodies

Reads0
Chats0
TLDR
In this article , the sensitivity of BA.1 and BA.2 to neutralization by nine therapeutic monoclonal antibodies (mAbs) was compared, and it was found that BA. 2 was sensitive to cilgavimab, partly inhibited by imdevimab and resistant to adintrevimab.
Abstract
The severe acute respiratory syndrome coronavirus 2 Omicron BA.1 sublineage has been supplanted in many countries by the BA.2 sublineage. BA.2 differs from BA.1 by about 21 mutations in its spike. In this study, we first compared the sensitivity of BA.1 and BA.2 to neutralization by nine therapeutic monoclonal antibodies (mAbs). In contrast to BA.1, BA.2 was sensitive to cilgavimab, partly inhibited by imdevimab and resistant to adintrevimab and sotrovimab. We then analyzed sera from 29 immunocompromised individuals up to 1 month after administration of Ronapreve (casirivimab and imdevimab) and/or Evusheld (cilgavimab and tixagevimab) antibody cocktails. All treated individuals displayed elevated antibody levels in their sera, which efficiently neutralized the Delta variant. Sera from Ronapreve recipients did not neutralize BA.1 and weakly inhibited BA.2. Neutralization of BA.1 and BA.2 was detected in 19 and 29 out of 29 Evusheld recipients, respectively. As compared to the Delta variant, neutralizing titers were more markedly decreased against BA.1 (344-fold) than BA.2 (nine-fold). We further report four breakthrough Omicron infections among the 29 individuals, indicating that antibody treatment did not fully prevent infection. Collectively, BA.1 and BA.2 exhibit noticeable differences in their sensitivity to therapeutic mAbs. Anti-Omicron neutralizing activity of Ronapreve and, to a lesser extent, that of Evusheld is reduced in patients’ sera. Therapeutic antibodies, and sera from immunocompromised individuals prophylactically treated with therapeutic antibodies, differ in neutralizing activity against the SARS-CoV-2 Omicron BA.1 and BA.2 sublineages, which could have implications for pre-exposure and post-exposure treatment.

read more

Citations
More filters
Journal ArticleDOI

Evolution of the SARS‐CoV‐2 omicron variants BA.1 to BA.5: Implications for immune escape and transmission

TL;DR: The theories that have been proposed on the evolution of Omicron including zoonotic spillage, infection in immunocompromised individuals and cryptic spread in the community without being diagnosed are examined.
References
More filters
Journal ArticleDOI

Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody.

TL;DR: Several monoclonal antibodies that target the S glycoprotein of SARS-CoV-2, which was identified from memory B cells of an individual who was infected with severe acute respiratory syndrome coronavirus (SARS- coV) in 2003, and one antibody (named S309) potently neutralization, which may limit the emergence of neutralization-escape mutants.
Journal ArticleDOI

SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies.

TL;DR: Eight new structures of distinct COVID-19 human neutralizing antibodies 5 in complex with the SARS-CoV-2 spike trimer or RBD are solved and rules for assigning current and future human RBD-targeting antibodies into classes, evaluating avidity effects and suggesting combinations for clinical use are provided.
Related Papers (5)