scispace - formally typeset
Open Access

Signal Recovery from Random Measurements Via Orthogonal Matching Pursuit: The Gaussian Case

Reads0
Chats0
TLDR
In this paper, a greedy algorithm called Orthogonal Matching Pursuit (OMP) was proposed to recover a signal with m nonzero entries in dimension 1 given O(m n d) random linear measurements of that signal.
Abstract
This report demonstrates theoretically and empirically that a greedy algorithm called Orthogonal Matching Pursuit (OMP) can reliably recover a signal with m nonzero entries in dimension d given O(mln d) random linear measurements of that signal. This is a massive improvement over previous results, which require O(m2) measurements. The new results for OMP are comparable with recent results for another approach called Basis Pursuit (BP). In some settings, the OMP algorithm is faster and easier to implement, so it is an attractive alternative to BP for signal recovery problems.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Cooperative spectrum sensing in cognitive radio networks: A survey

TL;DR: The state-of-the-art survey of cooperative sensing is provided to address the issues of cooperation method, cooperative gain, and cooperation overhead.
Journal ArticleDOI

Model-Based Compressive Sensing

TL;DR: In this article, the authors introduce a new class of structured compressible signals along with a new sufficient condition for robust structured compressibility signal recovery that they dub the restricted amplification property, which is the natural counterpart to the restricted isometry property of conventional CS.
Journal ArticleDOI

Algorithms for simultaneous sparse approximation: part I: Greedy pursuit

TL;DR: This paper proposes a greedy pursuit algorithm, called simultaneous orthogonal matching pursuit (S-OMP), for simultaneous sparse approximation, and presents some numerical experiments that demonstrate how a sparse model for the input signals can be identified more reliably given several input signals.
Journal ArticleDOI

Sparse Solution of Underdetermined Systems of Linear Equations by Stagewise Orthogonal Matching Pursuit

TL;DR: Stagewise Orthogonal Matching Pursuit (StOMP) successively transforms the signal into a negligible residual, and numerical examples showing that StOMP rapidly and reliably finds sparse solutions in compressed sensing, decoding of error-correcting codes, and overcomplete representation are given.
Proceedings ArticleDOI

Iteratively reweighted algorithms for compressive sensing

TL;DR: A particular regularization strategy is found to greatly improve the ability of a reweighted least-squares algorithm to recover sparse signals, with exact recovery being observed for signals that are much less sparse than required by an unregularized version.
References
More filters
Book

Matrix computations

Gene H. Golub
Book

Compressed sensing

TL;DR: It is possible to design n=O(Nlog(m)) nonadaptive measurements allowing reconstruction with accuracy comparable to that attainable with direct knowledge of the N most important coefficients, and a good approximation to those N important coefficients is extracted from the n measurements by solving a linear program-Basis Pursuit in signal processing.
Journal ArticleDOI

Atomic Decomposition by Basis Pursuit

TL;DR: Basis Pursuit (BP) is a principle for decomposing a signal into an "optimal" superposition of dictionary elements, where optimal means having the smallest l1 norm of coefficients among all such decompositions.
Journal ArticleDOI

Matching pursuits with time-frequency dictionaries

TL;DR: The authors introduce an algorithm, called matching pursuit, that decomposes any signal into a linear expansion of waveforms that are selected from a redundant dictionary of functions, chosen in order to best match the signal structures.
Related Papers (5)