scispace - formally typeset
Open Access

Signal Recovery from Random Measurements Via Orthogonal Matching Pursuit: The Gaussian Case

TLDR
In this paper, a greedy algorithm called Orthogonal Matching Pursuit (OMP) was proposed to recover a signal with m nonzero entries in dimension 1 given O(m n d) random linear measurements of that signal.
Abstract
This report demonstrates theoretically and empirically that a greedy algorithm called Orthogonal Matching Pursuit (OMP) can reliably recover a signal with m nonzero entries in dimension d given O(mln d) random linear measurements of that signal. This is a massive improvement over previous results, which require O(m2) measurements. The new results for OMP are comparable with recent results for another approach called Basis Pursuit (BP). In some settings, the OMP algorithm is faster and easier to implement, so it is an attractive alternative to BP for signal recovery problems.

read more

Content maybe subject to copyright    Report

Citations
More filters
Book

Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control

TL;DR: In this paper, the authors bring together machine learning, engineering mathematics, and mathematical physics to integrate modeling and control of dynamical systems with modern methods in data science, and highlight many of the recent advances in scientific computing that enable data-driven methods to be applied to a diverse range of complex systems, such as turbulence, the brain, climate, epidemiology, finance, robotics, and autonomy.
Journal ArticleDOI

Analysis of Orthogonal Matching Pursuit Using the Restricted Isometry Property

TL;DR: This paper demonstrates that the restricted isometry property (RIP) can be used for a very straightforward analysis of OMP and concludes that the RIP of order K+1 (with isometry constant δ <; [ 1/( 3√K)]) is sufficient for OMP to exactly recover any K-sparse signal.
Journal ArticleDOI

Beamforming for Millimeter Wave Communications: An Inclusive Survey

TL;DR: The suitability of millimeter wave beamforming methods, both, existing and proposed till midyear 2015, are explored, and the exciting new prospects unfolding in this domain are identified.
Journal ArticleDOI

Application of compressive sensing to sparse channel estimation

TL;DR: It is pointed out that a popular assumption - that multipath channels are sparse in their equivalent baseband representation - has pitfalls and there are over-complete dictionaries that lead to much sparser channel representations and better estimation performance.
Journal ArticleDOI

Image melding: combining inconsistent images using patch-based synthesis

TL;DR: This work presents a new method for synthesizing a transition region between two source images, such that inconsistent color, texture, and structural properties all change gradually from one source to the other, calling this process image melding.
References
More filters
Book

Matrix computations

Gene H. Golub
Book

Compressed sensing

TL;DR: It is possible to design n=O(Nlog(m)) nonadaptive measurements allowing reconstruction with accuracy comparable to that attainable with direct knowledge of the N most important coefficients, and a good approximation to those N important coefficients is extracted from the n measurements by solving a linear program-Basis Pursuit in signal processing.
Journal ArticleDOI

Atomic Decomposition by Basis Pursuit

TL;DR: Basis Pursuit (BP) is a principle for decomposing a signal into an "optimal" superposition of dictionary elements, where optimal means having the smallest l1 norm of coefficients among all such decompositions.
Journal ArticleDOI

Matching pursuits with time-frequency dictionaries

TL;DR: The authors introduce an algorithm, called matching pursuit, that decomposes any signal into a linear expansion of waveforms that are selected from a redundant dictionary of functions, chosen in order to best match the signal structures.
Related Papers (5)