scispace - formally typeset
Journal ArticleDOI

Solid oxide fuel cells

R. Mark Ormerod
- 18 Dec 2003 - 
- Vol. 32, Iss: 1, pp 17-28
Reads0
Chats0
TLDR
In this article, the authors discuss the particular issues facing the development of a high temperature solid-state fuel cell and the inorganic materials currently used and under investigation for such cells, together with the problems associated with operating SOFCs on practical hydrocarbon fuels.
Abstract
Despite being first demonstrated over 160 years ago, and offering significant environmental benefits and high electrical efficiency, it is only in the last two decades that fuel cells have offered a realistic prospect of being commercially viable. The solid oxide fuel cell (SOFC) offers great promise and is presently the subject of intense research activity. Unlike other fuel cells the SOFC is a solid-state device which operates at elevated temperatures. This review discusses the particular issues facing the development of a high temperature solid-state fuel cell and the inorganic materials currently used and under investigation for such cells, together with the problems associated with operating SOFCs on practical hydrocarbon fuels.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems

Andrea C. Ferrari, +68 more
- 04 Mar 2015 - 
TL;DR: An overview of the key aspects of graphene and related materials, ranging from fundamental research challenges to a variety of applications in a large number of sectors, highlighting the steps necessary to take GRMs from a state of raw potential to a point where they might revolutionize multiple industries are provided.
Journal ArticleDOI

Factors Governing Oxygen Reduction in Solid Oxide Fuel Cell Cathodes

TL;DR: These advances have led to dozens of active SOFC development programs in both stationary and mobile power and contributed to commercialization or development in a number of related technologies, including gas sensors, solid-state electrolysis devices, and iontransport membranes for gas separation and partial oxidation.
Journal ArticleDOI

Understanding Catalytic Activity Trends in the Oxygen Reduction Reaction.

TL;DR: This work shows that the performance of the commonly studied materials is limited by unfavorable scaling relationships (for binding energies of reaction intermediates), and presents a number of alternative strategies that may lead to the design and discovery of more promising materials for ORR.
Journal ArticleDOI

Materials for Solid Oxide Fuel Cells

TL;DR: A short review of the types and properties of materials that have been considered for each of these components is presented with an emphasis on the requirements for operation at intermediate temperature (500−800 °C).
Journal ArticleDOI

Intermediate temperature solid oxide fuel cells

TL;DR: This review introduces the IT-SOFC and explains the advantages of operation in this temperature regime, and examines the advances being made in materials and engineering that are allowing solid oxide fuel cells to operate at lower temperature.
References
More filters
Journal ArticleDOI

Materials for fuel-cell technologies

TL;DR: Recent progress in the search and development of innovative alternative materials in the development of fuel-cell stack is summarized.
Journal ArticleDOI

Ceramic Fuel Cells

TL;DR: Ceramic fuel cells, commonly referred to as solid-oxide fuel cells (SOFCs), are presently under development for a variety of power generation applications as mentioned in this paper, and the critical issues posed by the development of this type of fuel cell are discussed.
Journal ArticleDOI

Appraisal of Ce1−yGdyO2−y/2 electrolytes for IT-SOFC operation at 500°C

TL;DR: In this article, the authors evaluated thermodynamic and electrical conductivity data to select the most appropriate electrolyte composition for IT-SOFC operation at 500°C and found that the Gd 3+ ion is the preferred dopant, compared to Sm 3+ and Y 3+, at this temperature.
Journal ArticleDOI

Physical, chemical and electrochemical properties of pure and doped ceria

TL;DR: In this article, the physical, chemical, electrochemical and mechanical properties of pure and doped ceria, predominantly in the temperature range from 200 to 1000°C, are investigated.
Journal ArticleDOI

A direct-methane fuel cell with a ceria-based anode

TL;DR: In this paper, the authors reported the direct electrochemical oxidation of methane in solid oxide fuel cells that generate power densities upto 0.37 W cm−2 at 650°C.
Related Papers (5)