scispace - formally typeset
Journal ArticleDOI

Structural, Optical and Electrical Properties of Self-Assembled Films of PbSe Nanocrystals Treated with 1,2-Ethanedithiol

TLDR
The LbL process described here is a general strategy for producing uniform, conductive nanocrystal films for applications in optoelectronics and solar energy conversion.
Abstract
We describe the structural, optical, and electrical properties of high-quality films of PbSe nanocrystals fabricated by a layer-by-layer (LbL) dip-coating method that utilizes 1,2-ethanedithiol (EDT) as an insolubilizing agent. Comparative characterization of nanocrystal films made by spin-coating and by the LbL process shows that EDT quantitatively displaces oleic acid on the PbSe surface, causing a large volume loss that electronically couples the nanocrystals while severely degrading their positional and crystallographic order of the films. Field-effect transistors based on EDT-treated films are moderately conductive and ambipolar in the dark, becoming p-type and 30–60 times more conductive under 300 mW cm−2 broadband illumination. The nanocrystal films oxidize rapidly in air to yield, after short air exposures, highly conductive p-type solids. The LbL process described here is a general strategy for producing uniform, conductive nanocrystal films for applications in optoelectronics and solar energy co...

read more

Citations
More filters
Journal ArticleDOI

Quantum dot PbS(0.9)Se(0.1)/TiO2 heterojunction solar cells.

TL;DR: This ternary PbS(x)Se(1-x) quantum dot heterojunction device has a peak external quantum efficiency above 100% at 2.76 eV, approximately 2.7× the bandgap energy.
Journal ArticleDOI

Ambipolar and Unipolar PbSe Nanowire Field-Effect Transistors

TL;DR: By applying surface modification to n- and p-dope Pb Se NW FETs, the first PbSe NW inverters are fabricated, demonstrating the promise of these nanostructured materials in integrated circuits.
Journal ArticleDOI

Surface Chemistry Control of Colloidal Quantum Dot Band Gap

TL;DR: In this paper, a comprehensive description of such a phenomenon is provided by exploiting rationally designed thiol ligands at the surface of colloidal PbS QDs, as archetype of material in the strong quantum confinement regime.
Journal ArticleDOI

Nanocrystalline Metal Chalcogenides Obtained Open to Air: Synthesis, Morphology, Mechanism, and Optical Properties

TL;DR: In this paper, a green acetate−paraffin route was introduced that is suitable for the preparation of different chalcogenides, such as PbSe, Cu2Se, ZnSe, CdSe, NiSe2, CoSe, PbTe, and ZnS. All the experiment processes were conducted open to air.
References
More filters
Journal ArticleDOI

Two-dimensional charge transport in self-organized, high-mobility conjugated polymers

TL;DR: In this article, the authors used thin-film, field effect transistor structures to probe the transport properties of the ordered microcrystalline domains in the conjugated polymer poly(3-hexylthiophene), P3HT.
Journal ArticleDOI

Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer

TL;DR: In this article, a hybrid organic/inorganic electroluminescent device was constructed based on the recombination of holes injected into a layer of semiconducting p-paraphenylene vinylene (PPV) with electrons injected into the multilayer film of cadmium selenide nanocrystals.
Journal Article

Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer

TL;DR: In this article, a hybrid organic/inorganic electroluminescent device was constructed based on the recombination of holes injected into a layer of semiconducting p-paraphenylene vinylene (PPV) with electrons injected into the multilayer film of cadmium selenide nanocrystals.
Journal ArticleDOI

Electroluminescence from single monolayers of nanocrystals in molecular organic devices

TL;DR: A hybrid light-emitting diode (LED) that combines the ease of processability of organic materials with the narrow-band, efficient luminescence of colloidal quantum dots (QDs) is demonstrated and a 25-fold improvement in luminescent efficiency is observed.
Journal ArticleDOI

Quantum dot solar cells

TL;DR: In this article, three QD solar cell configurations are described: (1) photoelectrodes comprising QD arrays, (2) QD-sensitized nanocrystalline TiO 2, and (3) QDs dispersed in a blend of electron- and hole-conducting polymers.
Related Papers (5)