scispace - formally typeset
Journal ArticleDOI

Structural, Optical and Electrical Properties of Self-Assembled Films of PbSe Nanocrystals Treated with 1,2-Ethanedithiol

TLDR
The LbL process described here is a general strategy for producing uniform, conductive nanocrystal films for applications in optoelectronics and solar energy conversion.
Abstract
We describe the structural, optical, and electrical properties of high-quality films of PbSe nanocrystals fabricated by a layer-by-layer (LbL) dip-coating method that utilizes 1,2-ethanedithiol (EDT) as an insolubilizing agent. Comparative characterization of nanocrystal films made by spin-coating and by the LbL process shows that EDT quantitatively displaces oleic acid on the PbSe surface, causing a large volume loss that electronically couples the nanocrystals while severely degrading their positional and crystallographic order of the films. Field-effect transistors based on EDT-treated films are moderately conductive and ambipolar in the dark, becoming p-type and 30–60 times more conductive under 300 mW cm−2 broadband illumination. The nanocrystal films oxidize rapidly in air to yield, after short air exposures, highly conductive p-type solids. The LbL process described here is a general strategy for producing uniform, conductive nanocrystal films for applications in optoelectronics and solar energy co...

read more

Citations
More filters
Journal ArticleDOI

Structural, optical, and electrical properties of PbSe nanocrystal solids treated thermally or with simple amines.

TL;DR: The structural, optical, and electrical properties of films of spin-cast, oleate-capped PbSe nanocrystals that are treated thermally or chemically in solutions of hydrazine, methylamine, or pyridine to produce electronically coupled nanocrystal solids are described to aid in the rational development of solar cells based on colloidal Nanocrystal films.
Journal ArticleDOI

Photovoltaic devices employing ternary PbSxSe1-x nanocrystals.

TL;DR: Crystalline, monodisperse alloyed nanocrystals are obtained using a one-pot, hot injection reaction and Rutherford back scattering and energy-filtered transmission electron microscopy suggest that the S and Se anions are uniformly distributed in the alloy nanoparticles.
Journal ArticleDOI

Multiple Exciton Generation in Semiconductor Quantum Dots

TL;DR: If the MEG efficiency can be further enhanced and charge separation and transport can be optimized within QD films, then QD solar cells can lead to third-generation solar energy conversion technologies.
Journal ArticleDOI

A Solution NMR Toolbox for Characterizing the Surface Chemistry of Colloidal Nanocrystals

TL;DR: In this article, the possibilities of 1H solution NMR for the study of colloidal nanocrystal ligands are reviewed, using CdSe and PbSe nanocrystals with tightly bound oleate ligands as examples.
Journal ArticleDOI

Polymer-Passivated Inorganic Cesium Lead Mixed-Halide Perovskites for Stable and Efficient Solar Cells with High Open-Circuit Voltage over 1.3 V.

TL;DR: It is demonstrated that polythiophene, deposited on the top of CsPbI2 Br, can significantly reduce electron-hole recombination within the perovskite, which is due to the electronic passivation of surface defect states, and the interfacial properties are improved by a simple annealing process.
References
More filters
Journal ArticleDOI

Two-dimensional charge transport in self-organized, high-mobility conjugated polymers

TL;DR: In this article, the authors used thin-film, field effect transistor structures to probe the transport properties of the ordered microcrystalline domains in the conjugated polymer poly(3-hexylthiophene), P3HT.
Journal ArticleDOI

Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer

TL;DR: In this article, a hybrid organic/inorganic electroluminescent device was constructed based on the recombination of holes injected into a layer of semiconducting p-paraphenylene vinylene (PPV) with electrons injected into the multilayer film of cadmium selenide nanocrystals.
Journal Article

Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer

TL;DR: In this article, a hybrid organic/inorganic electroluminescent device was constructed based on the recombination of holes injected into a layer of semiconducting p-paraphenylene vinylene (PPV) with electrons injected into the multilayer film of cadmium selenide nanocrystals.
Journal ArticleDOI

Electroluminescence from single monolayers of nanocrystals in molecular organic devices

TL;DR: A hybrid light-emitting diode (LED) that combines the ease of processability of organic materials with the narrow-band, efficient luminescence of colloidal quantum dots (QDs) is demonstrated and a 25-fold improvement in luminescent efficiency is observed.
Journal ArticleDOI

Quantum dot solar cells

TL;DR: In this article, three QD solar cell configurations are described: (1) photoelectrodes comprising QD arrays, (2) QD-sensitized nanocrystalline TiO 2, and (3) QDs dispersed in a blend of electron- and hole-conducting polymers.
Related Papers (5)