scispace - formally typeset
Journal ArticleDOI

Structural, Optical and Electrical Properties of Self-Assembled Films of PbSe Nanocrystals Treated with 1,2-Ethanedithiol

TLDR
The LbL process described here is a general strategy for producing uniform, conductive nanocrystal films for applications in optoelectronics and solar energy conversion.
Abstract
We describe the structural, optical, and electrical properties of high-quality films of PbSe nanocrystals fabricated by a layer-by-layer (LbL) dip-coating method that utilizes 1,2-ethanedithiol (EDT) as an insolubilizing agent. Comparative characterization of nanocrystal films made by spin-coating and by the LbL process shows that EDT quantitatively displaces oleic acid on the PbSe surface, causing a large volume loss that electronically couples the nanocrystals while severely degrading their positional and crystallographic order of the films. Field-effect transistors based on EDT-treated films are moderately conductive and ambipolar in the dark, becoming p-type and 30–60 times more conductive under 300 mW cm−2 broadband illumination. The nanocrystal films oxidize rapidly in air to yield, after short air exposures, highly conductive p-type solids. The LbL process described here is a general strategy for producing uniform, conductive nanocrystal films for applications in optoelectronics and solar energy co...

read more

Citations
More filters
Journal ArticleDOI

Ultrathin PbS sheets by two-dimensional oriented attachment.

TL;DR: Two-dimensional oriented attachment of lead sulfide nanocrystals into ultrathin single-crystal sheets with dimensions on the micrometer scale is reported, found that this process is initiated by cosolvents, which alter nucleation and growth rates during the primary nanocrystal formation, and is finally driven by dense packing of oleic acid ligands on {100} facets of PbS.
Journal ArticleDOI

Dependence of carrier mobility on nanocrystal size and ligand length in PbSe nanocrystal solids.

TL;DR: The results establish a baseline for mobility trends in PbSe NC solids, with implications for fabricating high-mobility NC-based optoelectronic devices, and find that carrier mobility is independent of the polydispersity of the NC samples, which can be understood if percolation networks of the larger-diameter, smaller-band-gap NCs carry most of the current in these NCsolids.
Journal ArticleDOI

Multiple exciton generation in semiconductor quantum dots

TL;DR: In this paper, the authors present a review of recent work on the origin of the concept of enhanced multiple electron-hole pair (i.e. exciton) production in semiconductor quantum dots (QDs).
Journal ArticleDOI

Colloidal quantum-dot photodetectors exploiting multiexciton generation.

TL;DR: A class of solution-processed photoconductive detectors, sensitive in the ultraviolet, visible, and the infrared, are reported, in which the internal gain is dramatically enhanced for photon energies Ephoton greater than 2.7 times the quantum-confined bandgap Ebandgap.
Journal ArticleDOI

Fast, sensitive and spectrally tuneable colloidal-quantum-dot photodetectors

TL;DR: By building devices that exclude the diffusion component, this work is able to demonstrate a >1,000-fold improvement in the sensitivity-bandwidth product of tuneable colloidal-quantum-dot photodiodes operating in the visible and infrared.
References
More filters
Journal ArticleDOI

Two-dimensional charge transport in self-organized, high-mobility conjugated polymers

TL;DR: In this article, the authors used thin-film, field effect transistor structures to probe the transport properties of the ordered microcrystalline domains in the conjugated polymer poly(3-hexylthiophene), P3HT.
Journal ArticleDOI

Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer

TL;DR: In this article, a hybrid organic/inorganic electroluminescent device was constructed based on the recombination of holes injected into a layer of semiconducting p-paraphenylene vinylene (PPV) with electrons injected into the multilayer film of cadmium selenide nanocrystals.
Journal Article

Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer

TL;DR: In this article, a hybrid organic/inorganic electroluminescent device was constructed based on the recombination of holes injected into a layer of semiconducting p-paraphenylene vinylene (PPV) with electrons injected into the multilayer film of cadmium selenide nanocrystals.
Journal ArticleDOI

Electroluminescence from single monolayers of nanocrystals in molecular organic devices

TL;DR: A hybrid light-emitting diode (LED) that combines the ease of processability of organic materials with the narrow-band, efficient luminescence of colloidal quantum dots (QDs) is demonstrated and a 25-fold improvement in luminescent efficiency is observed.
Journal ArticleDOI

Quantum dot solar cells

TL;DR: In this article, three QD solar cell configurations are described: (1) photoelectrodes comprising QD arrays, (2) QD-sensitized nanocrystalline TiO 2, and (3) QDs dispersed in a blend of electron- and hole-conducting polymers.
Related Papers (5)