scispace - formally typeset
Journal ArticleDOI

Structural, Optical and Electrical Properties of Self-Assembled Films of PbSe Nanocrystals Treated with 1,2-Ethanedithiol

TLDR
The LbL process described here is a general strategy for producing uniform, conductive nanocrystal films for applications in optoelectronics and solar energy conversion.
Abstract
We describe the structural, optical, and electrical properties of high-quality films of PbSe nanocrystals fabricated by a layer-by-layer (LbL) dip-coating method that utilizes 1,2-ethanedithiol (EDT) as an insolubilizing agent. Comparative characterization of nanocrystal films made by spin-coating and by the LbL process shows that EDT quantitatively displaces oleic acid on the PbSe surface, causing a large volume loss that electronically couples the nanocrystals while severely degrading their positional and crystallographic order of the films. Field-effect transistors based on EDT-treated films are moderately conductive and ambipolar in the dark, becoming p-type and 30–60 times more conductive under 300 mW cm−2 broadband illumination. The nanocrystal films oxidize rapidly in air to yield, after short air exposures, highly conductive p-type solids. The LbL process described here is a general strategy for producing uniform, conductive nanocrystal films for applications in optoelectronics and solar energy co...

read more

Citations
More filters
Journal ArticleDOI

PbSe nanocrystal shape development: oriented attachment at mild conditions and microwave assisted growth of nanocubes

TL;DR: In this paper, high-resolution transmission electron microscopy has been used to investigate the interface between size selected PbSe nanocrystals obtained via hot injection process at 160 °C, the quality of the interface, after removal of capping ligands, strongly depends on the structure and stoichiometry of the surface.
Journal ArticleDOI

Capping nanoparticles with graphene quantum dots for enhanced thermoelectric performance

TL;DR: The general capability of graphene quantum dots to serve as capping ligands exchanging native organic stabilizers for various types of semiconductor nanoparticles affords the opportunity to engineer functional nanocomposites with remarkable thermoelectric properties.
Journal ArticleDOI

Photosensitization of ZnO rod electrodes with AgInS2nanoparticles and ZnS-AgInS2solid solution nanoparticles for solar cell applications

TL;DR: In this paper, ZnS-AgInS2 solid solution (ZAIS) was successfully immobilized on the surface of ZnO nanorod electrodes without using additional cross-linking agents.
Journal ArticleDOI

A Solution-Processed UV-Sensitive Photodiode Produced Using a New Silicon Nanocrystal Ink

TL;DR: In this paper, a solution-processed poly(3,4-ethylenedioxy-thiophene):poly(styrene sulfonate) (PEDOT: PSS) electron blocking layer and top and bottom contacts are needed along with the Si NC layer to construct the device.
References
More filters
Journal ArticleDOI

Two-dimensional charge transport in self-organized, high-mobility conjugated polymers

TL;DR: In this article, the authors used thin-film, field effect transistor structures to probe the transport properties of the ordered microcrystalline domains in the conjugated polymer poly(3-hexylthiophene), P3HT.
Journal ArticleDOI

Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer

TL;DR: In this article, a hybrid organic/inorganic electroluminescent device was constructed based on the recombination of holes injected into a layer of semiconducting p-paraphenylene vinylene (PPV) with electrons injected into the multilayer film of cadmium selenide nanocrystals.
Journal Article

Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer

TL;DR: In this article, a hybrid organic/inorganic electroluminescent device was constructed based on the recombination of holes injected into a layer of semiconducting p-paraphenylene vinylene (PPV) with electrons injected into the multilayer film of cadmium selenide nanocrystals.
Journal ArticleDOI

Electroluminescence from single monolayers of nanocrystals in molecular organic devices

TL;DR: A hybrid light-emitting diode (LED) that combines the ease of processability of organic materials with the narrow-band, efficient luminescence of colloidal quantum dots (QDs) is demonstrated and a 25-fold improvement in luminescent efficiency is observed.
Journal ArticleDOI

Quantum dot solar cells

TL;DR: In this article, three QD solar cell configurations are described: (1) photoelectrodes comprising QD arrays, (2) QD-sensitized nanocrystalline TiO 2, and (3) QDs dispersed in a blend of electron- and hole-conducting polymers.
Related Papers (5)