scispace - formally typeset
Open AccessJournal ArticleDOI

The Subsystems Approach to Genome Annotation and its Use in the Project to Annotate 1000 Genomes

TLDR
The subsystem approach is described, the first release of the growing library of populated subsystems is offered, and the SEED is the first annotation environment that supports this model of annotation.
Abstract
The release of the 1000th complete microbial genome will occur in the next two to three years. In anticipation of this milestone, the Fellowship for Interpretation of Genomes (FIG) launched the Project to Annotate 1000 Genomes. The project is built around the principle that the key to improved accuracy in high-throughput annotation technology is to have experts annotate single subsystems over the complete collection of genomes, rather than having an annotation expert attempt to annotate all of the genes in a single genome. Using the subsystems approach, all of the genes implementing the subsystem are analyzed by an expert in that subsystem. An annotation environment was created where populated subsystems are curated and projected to new genomes. A portable notion of a populated subsystem was defined, and tools developed for exchanging and curating these objects. Tools were also developed to resolve conflicts between populated subsystems. The SEED is the first annotation environment that supports this model of annotation. Here, we describe the subsystem approach, and offer the first release of our growing library of populated subsystems. The initial release of data includes 180 177 distinct proteins with 2133 distinct functional roles. This data comes from 173 subsystems and 383 different organisms.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Metagenomic biomarker discovery and explanation

TL;DR: A new method for metagenomic biomarker discovery is described and validates by way of class comparison, tests of biological consistency and effect size estimation to address the challenge of finding organisms, genes, or pathways that consistently explain the differences between two or more microbial communities.
Journal ArticleDOI

BIGSdb: Scalable analysis of bacterial genome variation at the population level

TL;DR: The Bacterial Isolate Genome Sequence Database (BIGSDB) represents a freely available resource that will assist the broader community in the elucidation of the structure and function of bacteria by means of a population genomics approach.
References
More filters
Journal ArticleDOI

Gene Ontology: tool for the unification of biology

TL;DR: The goal of the Gene Ontology Consortium is to produce a dynamic, controlled vocabulary that can be applied to all eukaryotes even as knowledge of gene and protein roles in cells is accumulating and changing.
Journal ArticleDOI

KEGG: Kyoto Encyclopedia of Genes and Genomes

TL;DR: The Kyoto Encyclopedia of Genes and Genomes (KEGG) as discussed by the authors is a knowledge base for systematic analysis of gene functions in terms of the networks of genes and molecules.
Journal ArticleDOI

Whole-genome random sequencing and assembly of Haemophilus influenzae Rd.

TL;DR: An approach for genome analysis based on sequencing and assembly of unselected pieces of DNA from the whole chromosome has been applied to obtain the complete nucleotide sequence of the genome from the bacterium Haemophilus influenzae Rd.
Journal ArticleDOI

MetaCyc: a multiorganism database of metabolic pathways and enzymes

TL;DR: In the past 2 years the data content and the Pathway Tools software used to query, visualize and edit MetaCyc have been expanded significantly, and these enhancements are described in this paper.
Related Papers (5)