scispace - formally typeset
Open AccessJournal ArticleDOI

Transendocardial, Autologous Bone Marrow Cell Transplantation for Severe, Chronic Ischemic Heart Failure

Reads0
Chats0
TLDR
The present study demonstrates the relative safety of intramyocardial injections of bone marrow–derived stem cells in humans with severe heart failure and the potential for improving myocardial blood flow with associated enhancement of regional and global left ventricular function.
Abstract
Background— This study evaluated the hypothesis that transendocardial injections of autologous mononuclear bone marrow cells in patients with end-stage ischemic heart disease could safely promote neovascularization and improve perfusion and myocardial contractility. Methods and Results— Twenty-one patients were enrolled in this prospective, nonrandomized, open-label study (first 14 patients, treatment; last 7 patients, control). Baseline evaluations included complete clinical and laboratory evaluations, exercise stress (ramp treadmill), 2D Doppler echocardiogram, single-photon emission computed tomography perfusion scan, and 24-hour Holter monitoring. Bone marrow mononuclear cells were harvested, isolated, washed, and resuspended in saline for injection by NOGA catheter (15 injections of 0.2 cc). Electromechanical mapping was used to identify viable myocardium (unipolar voltage ≥6.9 mV) for treatment. Treated and control patients underwent 2-month noninvasive follow-up, and treated patients alone underwen...

read more

Citations
More filters
Journal ArticleDOI

Monocytes in heart failure: relationship to a deteriorating immune overreaction or a desperate attempt for tissue repair?

TL;DR: Whether monocytes represent deteriorating immune overreaction in heart failure (HF), or a desperate attempt for tissue repair or physiological compensation in the failing heart, is provided.
Journal ArticleDOI

Can stem cells mend a broken heart

TL;DR: This review details recent experimental data and discusses the clinical potential of the various stem cell sources for CCT, including embryonic or foetal stem cells, myoblasts, and bone marrow stem cells.
Journal ArticleDOI

Stem cell therapy for ischemic heart disease.

TL;DR: Surprisingly, the observation that non-cardiomyogenic cells could also improve cardiac function indicates that functional integration of donor cells might not be required to achieve a beneficial effect.
Patent

Methods and compositions for treating tissue using silk proteins

TL;DR: In this paper, a self-reinforcing composite biomatrix, methods of manufacture and use, and Kits including delivery devices suitable for delivering the compositions are also disclosed, in some embodiments, the composition can include at least three components.
References
More filters
Journal ArticleDOI

Isolation of putative progenitor endothelial cells for angiogenesis.

TL;DR: It is suggested that EC progenitors may be useful for augmenting collateral vessel growth to ischemic tissues (therapeutic angiogenesis) and for delivering anti- or pro-angiogenic agents, respectively, to sites of pathologic or utilitarianAngiogenesis.
Journal ArticleDOI

Bone marrow cells regenerate infarcted myocardium

TL;DR: It is indicated that locally delivered bone marrow cells can generate de novo myocardium, ameliorating the outcome of coronary artery disease.
Journal ArticleDOI

Neovascularization of ischemic myocardium by human bone-marrow–derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function

TL;DR: It is shown that bone marrow from adult humans contains endothelial precursors with phenotypic and functional characteristics of embryonic hemangioblasts, and that these can be used to directly induce new blood vessel formation in the infarct-bed and proliferation of preexisting vasculature after experimental myocardial infarction.
Journal ArticleDOI

Human Mesenchymal Stem Cells Differentiate to a Cardiomyocyte Phenotype in the Adult Murine Heart

TL;DR: The persistence of the engrafted hMSCs and their in situ differentiation in the heart may represent the basis for using these adult stem cells for cellular cardiomyoplasty.
Related Papers (5)