scispace - formally typeset
Open AccessJournal ArticleDOI

Type Ia supernova discoveries at z > 1 from the Hubble Space Telescope: Evidence for past deceleration and constraints on dark energy evolution

TLDR
For a flat universe with a cosmological constant, the transition between the two epochs is constrained to be at z = 0.46 ± 0.13 as mentioned in this paper, and w = -1.02 ± (and w < -0.76 at the 95% confidence level) for an assumed static equation of state of dark energy.
Abstract
We have discovered 16 Type Ia supernovae (SNe Ia) with the Hubble Space Telescope (HST) and have used them to provide the first conclusive evidence for cosmic deceleration that preceded the current epoch of cosmic acceleration. These objects, discovered during the course of the GOODS ACS Treasury program, include 6 of the 7 highest redshift SNe Ia known, all at z > 1.25, and populate the Hubble diagram in unexplored territory. The luminosity distances to these objects and to 170 previously reported SNe Ia have been determined using empirical relations between light-curve shape and luminosity. A purely kinematic interpretation of the SN Ia sample provides evidence at the greater than 99% confidence level for a transition from deceleration to acceleration or, similarly, strong evidence for a cosmic jerk. Using a simple model of the expansion history, the transition between the two epochs is constrained to be at z = 0.46 ± 0.13. The data are consistent with the cosmic concordance model of ΩM ≈ 0.3, ΩΛ ≈ 0.7 (χ = 1.06) and are inconsistent with a simple model of evolution or dust as an alternative to dark energy. For a flat universe with a cosmological constant, we measure ΩM = 0.29 ± (equivalently, ΩΛ = 0.71). When combined with external flat-universe constraints, including the cosmic microwave background and large-scale structure, we find w = -1.02 ± (and w < -0.76 at the 95% confidence level) for an assumed static equation of state of dark energy, P = wρc2. Joint constraints on both the recent equation of state of dark energy, w0, and its time evolution, dw/dz, are a factor of ~8 more precise than the first estimates and twice as precise as those without the SNe Ia discovered with HST. Our constraints are consistent with the static nature of and value of w expected for a cosmological constant (i.e., w0 = -1.0, dw/dz = 0) and are inconsistent with very rapid evolution of dark energy. We address consequences of evolving dark energy for the fate of the universe.

read more

Content maybe subject to copyright    Report

Figures
Citations
More filters
Journal ArticleDOI

Smoothing Supernova Data to Reconstruct the Expansion History of the Universe and its Age

TL;DR: In this paper, a non-parametric method of smoothing supernova data over redshift using a Gaussian kernel was proposed to reconstruct important cosmological quantities including H(z) and w(z), in a model independent manner.
Journal ArticleDOI

Phase-space analysis of interacting phantom cosmology

TL;DR: In this paper, a detailed phase-space analysis of various phantom cosmological models, where the dark energy sector interacts with the dark matter one, is performed, and it is shown that all the examined models, although accepting stable late-time accelerated solutions, cannot alleviate the coincidence problem, unless one imposes a form of fine-tuning in the model parameters.
Journal ArticleDOI

The Chemical Abundances of Tycho G in Supernova Remnant 1572

TL;DR: In this paper, the chemical abundances of the star Tycho G in the direction of the remnant of supernova (SN) 1572, based on Keck high-resolution optical spectra, were analyzed.
Journal ArticleDOI

Interacting models of soft coincidence

TL;DR: In this article, an interaction between the dark energy component (either phantom or quintessence) and dark matter can alleviate the coincidence problem of late cosmic acceleration, which is a serious riddle in connection with our understanding of the evolution of the universe.
References
More filters
Journal ArticleDOI

Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds

TL;DR: In this article, a reprocessed composite of the COBE/DIRBE and IRAS/ISSA maps, with the zodiacal foreground and confirmed point sources removed, is presented.
Journal ArticleDOI

Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds

TL;DR: In this paper, the authors presented a reprocessed composite of the COBE/DIRBE and IRAS/ISSA maps, with the zodiacal foreground and confirmed point sources removed.
Related Papers (5)

Detection of the baryon acoustic peak in the large-scale correlation function of SDSS luminous red galaxies

Daniel J. Eisenstein, +51 more