scispace - formally typeset
Search or ask a question

Showing papers on "Adaptive optics published in 2016"


Journal ArticleDOI
TL;DR: In this paper, the adaptive optics system and NIRC2 camera were realigned on 2015 April 13, and the distortion map changed significantly after a realignment of 4.5 mas (75%) rms and the new distortion model for post-realignment observations have a total accuracy of 1.1 mas.
Abstract: We present a new geometric distortion model for the narrow-field mode of the near-infrared camera (NIRC2) fed by the adaptive optics system on the W. M. Keck II telescope. The adaptive optics system and NIRC2 camera were realigned on 2015 April 13. Observations of the crowded globular cluster, M53, were obtained before and after the realignment to characterize the geometric field distortion. The distorted NIRC2 positions of M53 stars were compared with precise astrometry of this cluster from Hubble Space Telescope observations. The resulting distortion map constructed just before the realignment is consistent with the previous solution derived using data from 2007 to 2009, indicating that the distortion has been stable to ~0.5 mas. The distortion map changed significantly after a realignment of 4.5 mas (75%) rms, and the new distortion model for post-realignment observations have a total accuracy of ~1.1 mas.

170 citations


Journal ArticleDOI
TL;DR: The approach offers diffraction-limited resolution, potentially at arbitrarily-low intensity levels and with 100 THz bandwidth, thus promising new applications in space-division multiplexing, adaptive optics, image correction, processing and recognition, 2D binary optical data processing and reconfigurable optical devices.
Abstract: The ability to control the wavefront of light is fundamental to focusing and redistribution of light, enabling many applications from imaging to spectroscopy. Wave interaction on highly nonlinear photorefractive materials is essentially the only established technology allowing the dynamic control of the wavefront of a light beam with another beam of light, but it is slow and requires large optical power. Here we report a proof-of-principle demonstration of a new technology for two-dimensional (2D) control of light with light based on the coherent interaction of optical beams on highly absorbing plasmonic metasurfaces. We illustrate this by performing 2D all-optical logical operations (AND, XOR and OR) and image processing. Our approach offers diffraction-limited resolution, potentially at arbitrarily-low intensity levels and with 100 THz bandwidth, thus promising new applications in space-division multiplexing, adaptive optics, image correction, processing and recognition, 2D binary optical data processing and reconfigurable optical devices.

116 citations


Journal ArticleDOI
TL;DR: The results indicate that the neural system's orientation sensitivity coincides with habitual blur orientation, which supports the neural origin of the meridional effect and raises important questions regarding the role of peripheral anisotropic optical quality.
Abstract: Optical blur in the peripheral retina is known to be highly anisotropic due to nonrotationally symmetric wavefront aberrations such as astigmatism and coma. At the neural level, the visual system exhibits anisotropies in orientation sensitivity across the visual field. In the fovea, the visual system shows higher sensitivity for cardinal over diagonal orientations, which is referred to as the oblique effect. However, in the peripheral retina, the neural visual system becomes more sensitive to radially-oriented signals, a phenomenon known as the meridional effect. Here, we examined the relative contributions of optics and neural processing to the meridional effect in 10 participants at 0°, 10°, and 20° in the temporal retina. Optical anisotropy was quantified by measuring the eye's habitual wavefront aberrations. Alternatively, neural anisotropy was evaluated by measuring contrast sensitivity (at 2 and 4 cyc/deg) while correcting the eye's aberrations with an adaptive optics vision simulator, thus bypassing any optical factors. As eccentricity increased, optical and neural anisotropy increased in magnitude. The average ratio of horizontal to vertical optical MTF (at 2 and 4 cyc/deg) at 0°, 10°, and 20° was 0.96 ± 0.14, 1.41 ± 0.54 and 2.15 ± 1.38, respectively. Similarly, the average ratio of horizontal to vertical contrast sensitivity with full optical correction at 0°, 10°, and 20° was 0.99 ± 0.15, 1.28 ± 0.28 and 1.75 ± 0.80, respectively. These results indicate that the neural system's orientation sensitivity coincides with habitual blur orientation. These findings support the neural origin of the meridional effect and raise important questions regarding the role of peripheral anisotropic optical quality in developing the meridional effect and emmetropization.

100 citations


Journal ArticleDOI
TL;DR: In this paper, high resolution imaging of solar prominence on the New Vacuum Solar Telescope (NVST) is introduced, using speckle masking, and each step of the data reduction especially the image alignment is discussed.

82 citations


Journal ArticleDOI
TL;DR: In this article, the authors used the IRDIS near-IR subsystem of the extreme adaptive optics imager SPHERE at the ESO/VLT to study the scattered light from the circumstellar disk via high resolution polarimetry and angular differential imaging.
Abstract: We studied the well known circumstellar disk around the Herbig Ae/Be star HD 97048 with high angular resolution to reveal undetected structures in the disk, which may be indicative of disk evolutionary processes such as planet formation. We used the IRDIS near-IR subsystem of the extreme adaptive optics imager SPHERE at the ESO/VLT to study the scattered light from the circumstellar disk via high resolution polarimetry and angular differential imaging. We imaged the disk in unprecedented detail and revealed four ring-like brightness enhancements and corresponding gaps in the scattered light from the disk surface with radii between 39 au and 341 au. We derived the inclination and position angle as well as the height of the scattering surface of the disk from our observational data. We found that the surface height profile can be described by a single power law up to a separation ~270 au. Using the surface height profile we measured the scattering phase function of the disk and found that it is well consistent with theoretical models of compact dust aggregates. We discuss the origin of the detected features and find that low mass (< 1 M_Jup) nascent planets are a possible explanation.

80 citations


Journal ArticleDOI
TL;DR: The Gemini Planet Imager's adaptive optics subsystem was designed specifically to facilitate high-contrast imaging and science observations show that image quality can be improved with the use of both the spatially filtered wavefront sensor and linear-quadratic-Gaussian control of vibration.
Abstract: The Gemini Planet Imager's adaptive optics (AO) subsystem was designed specifically to facilitate high-contrast imaging. A definitive description of the system's algorithms and technologies as built is given. 564 AO telemetry measurements from the Gemini Planet Imager Exoplanet Survey campaign are analyzed. The modal gain optimizer tracks changes in atmospheric conditions. Science observations show that image quality can be improved with the use of both the spatially filtered wavefront sensor and linear-quadratic-Gaussian control of vibration. The error budget indicates that for all targets and atmospheric conditions AO bandwidth error is the largest term.

76 citations


Journal ArticleDOI
TL;DR: A high-spectral-efficiency, large-capacity, featured free-space-optical (FSO) transmission system by using low-density, parity-check (LDPC) coded quadrature phase shift keying (QPSK) combined with orbital angular momentum (OAM) multiplexing with excellent agreement of experimental, numerical, and analytical results is found.
Abstract: We experimentally demonstrate a high-spectral-efficiency, large-capacity, featured free-space-optical (FSO) transmission system by using low-density, parity-check (LDPC) coded quadrature phase shift keying (QPSK) combined with orbital angular momentum (OAM) multiplexing. The strong atmospheric turbulence channel is emulated by two spatial light modulators on which four randomly generated azimuthal phase patterns yielding the Andrews spectrum are recorded. The validity of such an approach is verified by reproducing the intensity distribution and irradiance correlation function (ICF) from the full-scale simulator. Excellent agreement of experimental, numerical, and analytical results is found. To reduce the phase distortion induced by the turbulence emulator, the inexpensive wavefront sensorless adaptive optics (AO) is used. To deal with remaining channel impairments, a large-girth LDPC code is used. To further improve the aggregate data rate, the OAM multiplexing is combined with WDM, and 500 Gb/s optical transmission over the strong atmospheric turbulence channels is demonstrated.

72 citations


Proceedings ArticleDOI
TL;DR: iLocater as discussed by the authors is a stable and precise spectrograph for the Large Binocular Telescope (LBT) named iLocater that operates at the diffraction limit and uses single mode fibers to eliminate the effects of modal noise entirely.
Abstract: We are developing a stable and precise spectrograph for the Large Binocular Telescope (LBT) named "iLocater." The instrument comprises three principal components: a cross-dispersed echelle spectrograph that operates in the YJ-bands (0.97-1.30 microns), a fiber-injection acquisition camera system, and a wavelength calibration unit. iLocater will deliver high spectral resolution (R~150,000-240,000) measurements that permit novel studies of stellar and substellar objects in the solar neighborhood including extrasolar planets. Unlike previous planet-finding instruments, which are seeing-limited, iLocater operates at the diffraction limit and uses single mode fibers to eliminate the effects of modal noise entirely. By receiving starlight from two 8.4m diameter telescopes that each use "extreme" adaptive optics (AO), iLocater shows promise to overcome the limitations that prevent existing instruments from generating sub-meter-per-second radial velocity (RV) precision. Although optimized for the characterization of low-mass planets using the Doppler technique, iLocater will also advance areas of research that involve crowded fields, line-blanketing, and weak absorption lines.

69 citations


Journal ArticleDOI
TL;DR: By mapping traditional amplitude modulation to spatial modulation and employing adaptive optics compensation technique, this work proposes and experimentally demonstrate a high-speed Bessel beam encoding/decoding free-space optical link through atmospheric turbulence.
Abstract: By mapping traditional amplitude modulation to spatial modulation and employing adaptive optics compensation technique, we propose and experimentally demonstrate a high-speed Bessel beam encoding/decoding free-space optical link through atmospheric turbulence. The Bessel beam encoding/decoding speed is not limited by the conventional slow switching response of a spatial light modulator (SLM) but is fully determined by the modulation rate of an intensity modulator, which easily supports tens of gigabits per second modulation and resultant encoding/decoding. We use an SLM loaded with a pseudorandom phase mask to emulate atmospheric turbulence in the laboratory environment. An adaptive optics closed loop is used to sense the phase distortion of an extra probe Gaussian beam and then compensate the distorted Bessel beams. A 20-Gbit/s Bessel beam encoding/decoding link with adaptive turbulence compensation is demonstrated in the experiment, showing favorable operation performance.

67 citations


Proceedings ArticleDOI
TL;DR: The Large Binocular Telescope Interferometer (LBTI) is a high-resolution instrument developed for coherent imaging and nulling interferometry using the 14.4 m baseline of the 2×8.4m LBTI as discussed by the authors.
Abstract: The Large Binocular Telescope Interferometer (LBTI) is a high spatial resolution instrument developed for coherent imaging and nulling interferometry using the 14.4 m baseline of the 2×8.4 m LBT. The unique telescope design, comprising of the dual apertures on a common elevation-azimuth mount, enables a broad use of observing modes. The full system is comprised of dual adaptive optics systems, a near-infrared phasing camera, a 1-5 μm camera (called LMIRCam), and an 8-13 μm camera (called NOMIC). The key program for LBTI is the Hunt for Observable Signatures of Terrestrial planetary Systems (HOSTS), a survey using nulling interferometry to constrain the typical brightness from exozodiacal dust around nearby stars. Additional observations focus on the detection and characterization of giant planets in the thermal infrared, high spatial resolution imaging of complex scenes such as Jupiter's moon, Io, planets forming in transition disks, and the structure of active Galactic Nuclei (AGN). Several instrumental upgrades are currently underway to improve and expand the capabilities of LBTI. These include: Improving the performance and limiting magnitude of the parallel adaptive optics systems; quadrupling the field of view of LMIRcam (increasing to 20"x20"); adding an integral field spectrometry mode; and implementing a new algorithm for path length correction that accounts for dispersion due to atmospheric water vapor. We present the current architecture and performance of LBTI, as well as an overview of the upgrades.

66 citations


Journal ArticleDOI
TL;DR: In this paper, an adaptive-optics (AO) image of the strong lens system RXJ 1131-1231 was used to extract the unknown PSF directly from the imaging of strongly lensed quasars.
Abstract: Accurate and precise measurements of the Hubble constant are critical for testing our current standard cosmological model and revealing possibly new physics. With Hubble Space Telescope (HST) imaging, each strong gravitational lens system with measured time delays can allow one to determine the Hubble constant with an uncertainty of ˜7 per cent. Since HST will not last forever, we explore adaptive-optics (AO) imaging as an alternative that can provide higher angular resolution than HST imaging but has a less stable point spread function (PSF) due to atmospheric distortion. To make AO imaging useful for time-delay-lens cosmography, we develop a method to extract the unknown PSF directly from the imaging of strongly lensed quasars. In a blind test with two mock data sets created with different PSFs, we are able to recover the important cosmological parameters (time-delay distance, external shear, lens-mass profile slope, and total Einstein radius). Our analysis of the Keck AO image of the strong lens system RXJ 1131-1231 shows that the important parameters for cosmography agree with those based on HST imaging and modelling within 1σ uncertainties. Most importantly, the constraint on the model time-delay distance by using AO imaging with 0.09 arcsec resolution is tighter by ˜50 per cent than the constraint of time-delay distance by using HST imaging with 0.09 arcsec when a power-law mass distribution for the lens system is adopted. Our PSF reconstruction technique is generic and applicable to data sets that have multiple nearby point sources, enabling scientific studies that require high-precision models of the PSF.

Journal ArticleDOI
TL;DR: The demonstrated robustness of optical two-way time transfer against strong turbulence and its compatibility with adaptive optics is encouraging for future femtosecond clock synchronization over very long distance ground-to-air free-space paths.
Abstract: We demonstrate real-time, femtosecond-level clock synchronization across a low-lying, strongly turbulent, 12-km horizontal air path by optical two-way time transfer. For this long horizontal free-space path, the integrated turbulence extends well into the strong turbulence regime corresponding to multiple scattering with a Rytov variance up to 7 and with the number of signal interruptions exceeding 100 per second. Nevertheless, optical two-way time transfer is used to synchronize a remote clock to a master clock with femtosecond-level agreement and with a relative time deviation dropping as low as a few hundred attoseconds. Synchronization is shown for a remote clock based on either an optical or microwave oscillator and using either tip-tilt or adaptive-optics free-space optical terminals. The performance is unaltered from optical two-way time transfer in weak turbulence across short links. These results confirm that the two-way reciprocity of the free-space time-of-flight is maintained both under strong turbulence and with the use of adaptive optics. The demonstrated robustness of optical two-way time transfer against strong turbulence and its compatibility with adaptive optics is encouraging for future femtosecond clock synchronization over very long distance ground-to-air free-space paths.

Proceedings ArticleDOI
TL;DR: In this article, the Single conjugated adaptive Optics upgrade for LBT (SOUL) is proposed to enable the closed loop operations at a faster cycle rate and with higher number of slopes.
Abstract: We present here SOUL: the Single conjugated adaptive Optics Upgrade for LBT. Soul will upgrade the wavefront sensors replacing the existing CCD detector with an EMCCD camera and the rest of the system in order to enable the closed loop operations at a faster cycle rate and with higher number of slopes. Thanks to reduced noise, higher number of pixel and framerate, we expect a gain (for a given SR) around 1.5–2 magnitudes at all wavelengths in the range 7.5 70% in I-band and 0.6asec seeing) and the sky coverage will be multiplied by a factor 5 at all galactic latitudes. Upgrading the SCAO systems at all the 4 focal stations, SOUL will provide these benefits in 2017 to the LBTI interferometer and in 2018 to the 2 LUCI NIR spectro-imagers. In the same year the SOUL correction will be exploited also by the new generation of LBT instruments: V-SHARK, SHARK-NIR and iLocater.

Journal ArticleDOI
TL;DR: In this article, the estimation accuracy of digital-holographic detection for wavefront sensing in the presence of distributed volume or "deep" turbulence and detection noise is investigated, where the authors develop wave-optics simulations which explore the estimation accuracies of digital holographic detection.
Abstract: This paper develops wave-optics simulations which explore the estimation accuracy of digital-holographic detection for wavefront sensing in the presence of distributed-volume or “deep” turbulence and detection noise. Specifically, the analysis models spherical-wave propagation through varying deep-turbulence conditions along a horizontal propagation path and formulates the field-estimated Strehl ratio as a function of the diffraction-limited sampling quotient and signal-to-noise ratio. Such results will allow the reader to assess the number of pixels, pixel field of view, pixel-well depth, and read-noise standard deviation needed from a focal-plane array when using digital-holographic detection in the off-axis image plane recording geometry for deep-turbulence wavefront sensing.

Journal ArticleDOI
TL;DR: ZELDA as mentioned in this paper is a wavefront sensor based on Zernike phase-contrast methods to circumvent the low spatial frequency differential aberrations between the ExAO sensing path and the science path.
Abstract: Warm or massive gas giant planets, brown dwarfs, and debris disks around nearby stars are now routinely observed by dedicated high-contrast imaging instruments that are mounted on large, ground-based observatories. These facilities include extreme adaptive optics (ExAO) and state-of-the-art coronagraphy to achieve unprecedented sensitivities for exoplanet detection and their spectral characterization. However, low spatial frequency differential aberrations between the ExAO sensing path and the science path represent critical limitations for the detection of giant planets with a contrast lower than a few 10-6 at very small separations (<0.3′′) from their host star. In our previous work, we proposed a wavefront sensor based on Zernike phase-contrast methods to circumvent this problem and measure these quasi-static aberrations at a nanometric level. We present the design, manufacturing, and testing of ZELDA, a prototype that was installed on VLT/SPHERE during its reintegration in Chile. Using the internal light source of the instrument, we first performed measurements in the presence of Zernike or Fourier modes introduced with the deformable mirror. Our experimental results are consistent with the results in simulations, confirming the ability of our sensor to measure small aberrations (<50 nm rms) with nanometric accuracy. Following these results, we corrected the long-lived non-common path aberrations in SPHERE based on ZELDA measurements and estimated a contrast gain of 10 in the coronagraphic image at 0.2′′, reaching the raw contrast limit set by the coronagraph in the instrument. In addition to this encouraging result, the simplicity of the design and its phase reconstruction algorithm makes ZELDA an excellent candidate for the online measurements of quasi-static aberrations during the observations. The implementation of a ZELDA-based sensing path on the current and future facilities (ELTs, future space missions) could facilitate the observation of cold gaseous or massive rocky planets around nearby stars.

Journal ArticleDOI
TL;DR: The experimental results show that the adaptive feedback correction scheme can efficiently compensate for the atmospheric turbulence induced distortions, i.e., reducing power fluctuation of multicasted OAM channels, suppressing inter-channel crosstalk, and improving the bit-error rate (BER) performance.
Abstract: By using an adaptive feedback correction technique, we experimentally demonstrate turbulence compensation for free-space four-fold and eight-fold 16-ary quadrature amplitude modulation (16-QAM) carrying orbital angular momentum (OAM) multicasting links. The performance of multicasted OAM beams through emulated atmospheric turbulence and adaptive optics assisted compensation loop is investigated. The experimental results show that the scheme can efficiently compensate for the atmospheric turbulence induced distortions, i.e., reducing power fluctuation of multicasted OAM channels, suppressing inter-channel crosstalk, and improving the bit-error rate (BER) performance.

Proceedings ArticleDOI
TL;DR: iLocater as discussed by the authors is a stable and precise spectrograph for the Large Binocular Telescope (LBT) named iLocater, which operates at the diffraction limit and uses single mode fibers to eliminate the effects of modal noise entirely.
Abstract: We are developing a stable and precise spectrograph for the Large Binocular Telescope (LBT) named “iLocater.” The instrument comprises three principal components: a cross-dispersed echelle spectrograph that operates in the YJ-bands (0.97-1.30 μm), a fiber-injection acquisition camera system, and a wavelength calibration unit. iLocater will deliver high spectral resolution (R~150,000-240,000) measurements that permit novel studies of stellar and substellar objects in the solar neighborhood including extrasolar planets. Unlike previous planet-finding instruments, which are seeing-limited, iLocater operates at the diffraction limit and uses single mode fibers to eliminate the effects of modal noise entirely. By receiving starlight from two 8.4m diameter telescopes that each use “extreme” adaptive optics (AO), iLocater shows promise to overcome the limitations that prevent existing instruments from generating sub-meter-per-second radial velocity (RV) precision. Although optimized for the characterization of low-mass planets using the Doppler technique, iLocater will also advance areas of research that involve crowded fields, line-blanketing, and weak absorption lines.

Journal ArticleDOI
TL;DR: This is an overview of the adaptive optics used in Advanced LIGO, known as the thermal compensation system (TCS), which meets the requirements of correcting for nominal distortion in aLIGO to a maximum residual error of 5.4 nm rms.
Abstract: This is an overview of the adaptive optics used in Advanced LIGO (aLIGO), known as the thermal compensation system (TCS). The TCS was designed to minimize thermally induced spatial distortions in the interferometer optical modes and to provide some correction for static curvature errors in the core optics of aLIGO. The TCS is comprised of ring heater actuators, spatially tunable CO2 laser projectors, and Hartmann wavefront sensors. The system meets the requirements of correcting for nominal distortion in aLIGO to a maximum residual error of 5.4 nm rms, weighted across the laser beam, for up to 125 W of laser input power into the interferometer.

Journal ArticleDOI
TL;DR: In this paper, the authors outline how extreme adaptive optics systems can enable advanced photonic and diffraction-limited technologies to be exploited in spectrograph design and the impact it will have on spectroscopy.
Abstract: Extreme adaptive optics systems are now in operation across the globe. These systems, capable of high order wavefront correction, deliver Strehl ratios of 90% in the near-infrared. Originally intended for the direct imaging of exoplanets, these systems are often equipped with advanced coronagraphs that suppress the on-axis-star, interferometers to calibrate wavefront errors, and low order wavefront sensors to stabilize any tip/tilt residuals to a degree never seen before. Such systems are well positioned to facilitate the detailed spectroscopic characterization of faint substellar companions at small angular separations from the host star. Additionally, the increased light concentration of the point-spread function and the unprecedented stability create opportunities in other fields of astronomy as well, including spectroscopy. With such Strehl ratios, efficient injection into single-mode fibers or photonic lanterns becomes possible. With diffraction-limited components feeding the instrument, calibrating a spectrograph's line profile becomes considerably easier, as modal noise or imperfect scrambling of the fiber output are no longer an issue. It also opens up the possibility of exploiting photonic technologies for their advanced functionalities, inherent replicability, and small, lightweight footprint to design and build future instrumentation. In this work, we outline how extreme adaptive optics systems will enable advanced photonic and diffraction-limited technologies to be exploited in spectrograph design and the impact it will have on spectroscopy. We illustrate that the precision of an instrument based on these technologies, would be limited by the spectral content and stellar noise on cool stars and capable of achieving a radial velocity precision of several m/s; the level required for detecting an exo-Earth in the HZ of a nearby M-dwarf.

Journal ArticleDOI
TL;DR: ZELDA as mentioned in this paper is a wavefront sensor based on Zernike phase contrast methods to circumvent the differential aberrations between the extreme adaptive optics (ExAO) sensing path and the science path for the detection of giant planets with a contrast lower than a few $10-6}$ at very small separations (<0.3
Abstract: Warm or massive gas giant planets, brown dwarfs, and debris disks around nearby stars are now routinely observed by dedicated high-contrast imaging instruments on large, ground-based observatories. These facilities include extreme adaptive optics (ExAO) and state-of-the-art coronagraphy to achieve unprecedented sensitivities for exoplanet detection and spectral characterization. However, differential aberrations between the ExAO sensing path and the science path represent a critical limitation for the detection of giant planets with a contrast lower than a few $10^{-6}$ at very small separations (<0.3\as) from their host star. In our previous work, we proposed a wavefront sensor based on Zernike phase contrast methods to circumvent this issue and measure these quasi-static aberrations at a nanometric level. We present the design, manufacturing and testing of ZELDA, a prototype that was installed on VLT/SPHERE during its reintegration in Chile. Using the internal light source of the instrument, we performed measurements in the presence of Zernike or Fourier modes introduced with the deformable mirror. Our experimental and simulation results are consistent, confirming the ability of our sensor to measure small aberrations (<50 nm rms) with nanometric accuracy. We then corrected the long-lived non-common path aberrations in SPHERE based on ZELDA measurements. We estimated a contrast gain of 10 in the coronagraphic image at 0.2\as, reaching the raw contrast limit set by the coronagraph in the instrument. The simplicity of the design and its phase reconstruction algorithm makes ZELDA an excellent candidate for the on-line measurements of quasi-static aberrations during the observations. The implementation of a ZELDA-based sensing path on the current and future facilities (ELTs, future space missions) could ease the observation of the cold gaseous or massive rocky planets around nearby stars.

Journal ArticleDOI
TL;DR: The Greenwood frequency is used as a reference for designing the AO system for the CFSOC system with a closed-loop adaptive optics unit and an experimental correction system is designed with a double-stage fast-steering-mirror and a 97-element continuous surface deformable mirror.
Abstract: The Greenwood frequency (GF) is influential in performance improvement for the coherent free space optical communications (CFSOC) system with a closed-loop adaptive optics (AO) unit. We analyze the impact of tilt and high-order aberrations on the mixing efficiency (ME) and bit-error-rate (BER) under different GF. The root-mean-square value (RMS) of the ME related to the RMS of the tilt aberrations, and the GF is derived to estimate the volatility of the ME. Furthermore, a numerical simulation is applied to verify the theoretical analysis, and an experimental correction system is designed with a double-stage fast-steering-mirror and a 97-element continuous surface deformable mirror. The conclusions of this paper provide a reference for designing the AO system for the CFSOC system.

Proceedings ArticleDOI
TL;DR: The Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS) as discussed by the authors is an integral field spectrograph that has been built for the Subaru telescope to detect brown dwarfs and hot Jovian planets down to contrasts five orders of magnitude dimmer than their parent star at an inner working angle as low as 80 milliarcseconds.
Abstract: The Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS) is an integral field spectrograph (IFS) that has been built for the Subaru telescope. CHARIS has two imaging modes; the high-resolution mode is R82, R69, and R82 in J, H, and K bands respectively while the low-resolution discovery mode uses a second low-resolution prism with R19 spanning 1.15-2.37 microns (J+H+K bands). The discovery mode is meant to augment the low inner working angle of the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) adaptive optics system, which feeds CHARIS a coronagraphic image. The goal is to detect and characterize brown dwarfs and hot Jovian planets down to contrasts five orders of magnitude dimmer than their parent star at an inner working angle as low as 80 milliarcseconds. CHARIS constrains spectral crosstalk through several key aspects of the optical design. Additionally, the repeatability of alignment of certain optical components is critical to the calibrations required for the data pipeline. Specifically the relative alignment of the lens let array, prism, and detector must be highly stable and repeatable between imaging modes. We report on the measured repeatability and stability of these mechanisms, measurements of spectral crosstalk in the instrument, and the propagation of these errors through the data pipeline. Another key design feature of CHARIS is the prism, which pairs Barium Fluoride with Ohara L-BBH2 high index glass. The dispersion of the prism is significantly more uniform than other glass choices, and the CHARIS prisms represent the first NIR astronomical instrument that uses L-BBH2as the high index material. This material choice was key to the utility of the discovery mode, so significant efforts were put into cryogenic characterization of the material. The final performance of the prism assemblies in their operating environment is described in detail. The spectrograph is going through final alignment, cryogenic cycling, and is being delivered to the Subaru telescope in April 2016. This paper is a report on the laboratory performance of the spectrograph, and its current status in the commissioning process so that observers will better understand the instrument capabilities. We will also discuss the lessons learned during the testing process and their impact on future high-contrast imaging spectrographs for wavefront control.

Journal ArticleDOI
TL;DR: A hill-climbing algorithm for WSAO with a variable focus lens and deformable mirror for non-invasive in vivo imaging of EGFP (enhanced green fluorescent protein) labelled ganglion cells and microglia cells in the mouse retina is demonstrated.
Abstract: Cellular-resolution in vivo fluorescence imaging is a valuable tool for longitudinal studies of retinal function in vision research. Wavefront sensorless adaptive optics (WSAO) is a developing technology that enables high-resolution imaging of the mouse retina. In place of the conventional method of using a Shack-Hartmann wavefront sensor to measure the aberrations directly, WSAO uses an image quality metric and a search algorithm to drive the shape of the adaptive element (i.e. deformable mirror). WSAO is a robust approach to AO and it is compatible with a compact, low-cost lens-based system. In this report, we demonstrated a hill-climbing algorithm for WSAO with a variable focus lens and deformable mirror for non-invasive in vivo imaging of EGFP (enhanced green fluorescent protein) labelled ganglion cells and microglia cells in the mouse retina.

Journal ArticleDOI
TL;DR: This work utilized a commercially available variable focal length lens to correct for a wide range of defocus commonly found in patient’s eyes, and a novel multi-actuator adaptive lens for aberration correction to achieve near diffraction limited imaging performance at the retina.
Abstract: Optical coherence tomography (OCT) has revolutionized modern ophthalmology, providing depth resolved images of the retinal layers in a system that is suited to a clinical environment. Although the axial resolution of OCT system, which is a function of the light source bandwidth, is sufficient to resolve retinal features at a micrometer scale, the lateral resolution is dependent on the delivery optics and is limited by ocular aberrations. Through the combination of wavefront sensorless adaptive optics and the use of dual deformable transmissive optical elements, we present a compact lens-based OCT system at an imaging wavelength of 1060 nm for high resolution retinal imaging. We utilized a commercially available variable focal length lens to correct for a wide range of defocus commonly found in patient's eyes, and a novel multi-actuator adaptive lens for aberration correction to achieve near diffraction limited imaging performance at the retina. With a parallel processing computational platform, high resolution cross-sectional and en face retinal image acquisition and display was performed in real time. In order to demonstrate the system functionality and clinical utility, we present images of the photoreceptor cone mosaic and other retinal layers acquired in vivo from research subjects.

Proceedings ArticleDOI
TL;DR: The MAORY project as discussed by the authors is one of the four instruments for the E-ELT approved for construction, and it is an adaptive optics module offering two compensation modes: multi-conjugate and single-convoyate adaptive optics.
Abstract: MAORY is one of the four instruments for the E-ELT approved for construction. It is an adaptive optics module offering two compensation modes: multi-conjugate and single-conjugate adaptive optics. The project has recently entered its phase B. A system-level overview of the current status of the project is given in this paper.

Journal ArticleDOI
TL;DR: This technique utilizes recent advances in wavefront shaping techniques for focusing light through a turbid media and applies them to chemical detection to achieve a signal enhancement with little sacrifice to the overall simplicity of the experimental setup.
Abstract: Spontaneous Raman scattering is a powerful tool for chemical sensing and imaging but suffers from a weak signal. In this Letter, we present an application of adaptive optics to enhance the Raman scattering signal detected through a turbid, optically thick material. This technique utilizes recent advances in wavefront shaping techniques for focusing light through a turbid media and applies them to chemical detection to achieve a signal enhancement with little sacrifice to the overall simplicity of the experimental setup. With this technique, we demonstrate an enhancement in the Raman signal from titanium dioxide particles through a highly scattering material. This technique may pave the way to label-free tracking using the optical memory effect.

Journal ArticleDOI
TL;DR: In this paper, an iterated extended Kalman filter (IEKF) was proposed to enable fast wavefront correction and a recursive, nearly-optimal estimate of the incoherent light.
Abstract: For imaging faint exoplanets and disks, a coronagraph-equipped observatory needs focal plane wavefront correction to recover high contrast. The most efficient correction methods iteratively estimate the stellar electric field and suppress it with active optics. The estimation requires several images from the science camera per iteration. To maximize the science yield, it is desirable both to have fast wavefront correction and to utilize all the correction images for science target detection. Exoplanets and disks are incoherent with their stars, so a nonlinear estimator is required to estimate both the incoherent intensity and the stellar electric field. Such techniques assume a high level of stability found only on space-based observatories and possibly ground-based telescopes with extreme adaptive optics. In this paper, we implement a nonlinear estimator, the iterated extended Kalman filter (IEKF), to enable fast wavefront correction and a recursive, nearly-optimal estimate of the incoherent light. In Princeton's High Contrast Imaging Laboratory we demonstrate that the IEKF allows wavefront correction at least as fast as with a Kalman filter and provides the most accurate detection of a faint companion. The nonlinear IEKF formalism allows us to pursue other strategies such as parameter estimation to improve wavefront correction.

Journal ArticleDOI
TL;DR: This work increases the bit efficiency and reduce the data transfer load by digitizing only the signal after rejecting the background, and obtained the wavefront of ultrasonically tagged light after a single frame of measurement taken within 0.3 ms, and focused light in between two diffusers.
Abstract: Time-reversed ultrasonically encoded optical focusing measures the wavefront of ultrasonically tagged light, and then phase conjugates the tagged light back to the ultrasonic focus, thus focusing light deep inside the scattering media. In previous works, the speed of wavefront measurement was limited by the low frame rates of conventional cameras. In addition, these cameras used most of their bits to represent an informationless background when the signal-to-background ratio was low, resulting in extremely low efficiencies in the use of bits. Here, using a lock-in camera, we increase the bit efficiency and reduce the data transfer load by digitizing only the signal after rejecting the background. With this camera, we obtained the wavefront of ultrasonically tagged light after a single frame of measurement taken within 0.3 ms, and focused light in between two diffusers. The phase sensitivity has reached 0.51 rad even when the SBR is 6×10-4.

Journal ArticleDOI
TL;DR: If deeper fabrication is required, it is demonstrated experimentally that the aberration can be successfully removed using adaptive optics to fabricate single mode optical waveguides over a depth range > 1 mm.
Abstract: The depth dependent spherical aberration is investigated for ultrafast laser written waveguides fabricated in a transverse writing geometry using the slit beam shaping technique in the low pulse repetition rate regime. The axial elongation of the focus caused by the aberration leads to a distortion of the refractive index change, and waveguides designed as single mode become multimode. We theoretically estimate a depth range over which the aberration effects can be compensated simply by adjusting the incident laser power. If deeper fabrication is required, it is demonstrated experimentally that the aberration can be successfully removed using adaptive optics to fabricate single mode optical waveguides over a depth range > 1 mm.

Journal ArticleDOI
TL;DR: Wave-optics numerical simulation and experimental results demonstrate that coherent fiber-array systems are more efficient in mitigation of atmospheric turbulence effects and generation of a hit spot of the smallest possible size on a remotely located target.
Abstract: The performance of two prominent laser beam projection system types is analyzed through wave-optics numerical simulations for various atmospheric turbulence conditions, propagation distances, and adaptive optics (AO) mitigation techniques Comparisons are made between different configurations of both a conventional beam director (BD) using a monolithic-optics-based Cassegrain telescope and a fiber-array BD that uses an array of densely packed fiber collimators The BD systems considered have equal input power and aperture diameters The projected laser beam power inside the Airy size disk at the target plane is used as the performance metric For the fiber-array system, both incoherent and coherent beam combining regimes are considered We also present preliminary results of side-by-side atmospheric beam projection experiments over a 7-km propagation path using both the AO-enhanced beam projection system with a Cassegrain telescope and the coherent fiber-array BD composed of 21 densely packed fiber collimators Both wave-optics numerical simulation and experimental results demonstrate that, for similar system architectures and turbulence conditions, coherent fiber-array systems are more efficient in mitigation of atmospheric turbulence effects and generation of a hit spot of the smallest possible size on a remotely located target