scispace - formally typeset
Search or ask a question

Showing papers on "Ceramic published in 2003"


Journal ArticleDOI
TL;DR: The biomimetic process has been used to deposit nano-sized bone- like apatite on fine polymer fibers, which were textured into a three-dimensional knit framework, which is expected to ultimately lead to bioactive composites that have a bone-like structure and, hence,Bone-like mechanical properties.

1,744 citations


Journal ArticleDOI
TL;DR: In this article, a collector consisting of two pieces of electrically conductive substrates separated by a gap whose width could be varied from hundreds of micrometers to several centimeters.
Abstract: Electrospinning has been applied to prepare uniaxially aligned nanofibers made of organic polymers, ceramics, and polymer/ceramic composites The key to the success of this method was the use of a collector consisting of two pieces of electrically conductive substrates separated by a gap whose width could be varied from hundreds of micrometers to several centimeters As driven by electrostatic interactions, the charged nanofibers were stretched to span across the gap and thus to become uniaxially aligned arrays over large areas Because the nanofibers were suspended over the gap, they could be conveniently transferred onto the surfaces of other substrates for subsequent treatments and various applications Materials that have been successfully incorporated into this procedure include conventional organic polymers, graphite carbon, and metal oxides By controlling the parameters for electrospinning, we have also fabricated a number of simple device structures, for example, an individual nanofiber spanning

1,460 citations


Journal ArticleDOI
TL;DR: This work fabricated fully dense nanocomposites of single-wall carbon nanotubes with nanocrystalline alumina (Al2O3) matrix at sintering temperatures as low as 1,150 °C by spark-plasma sintered, demonstrating their potential use in reinforcing nanocrystaline ceramics.
Abstract: The extraordinary mechanical, thermal and electrical properties of carbon nanotubes have prompted intense research into a wide range of applications in structural materials, electronics, chemical processing and energy management. Attempts have been made to develop advanced engineering materials with improved or novel properties through the incorporation of carbon nanotubes in selected matrices (polymers, metals and ceramics). But the use of carbon nanotubes to reinforce ceramic composites has not been very successful; for example, in alumina-based systems only a 24% increase in toughness has been obtained so far. Here we demonstrate their potential use in reinforcing nanocrystalline ceramics. We have fabricated fully dense nanocomposites of single-wall carbon nanotubes with nanocrystalline alumina (Al2O3) matrix at sintering temperatures as low as 1,150 degrees C by spark-plasma sintering. A fracture toughness of 9.7 MPa m 1/2, nearly three times that of pure nanocrystalline alumina, can be achieved.

958 citations


Book
01 Jan 2003
TL;DR: In this paper, the authors present a review of the application of Nanocomposites in the following areas: 1.1 Encapsulated Composite Nanosystems, 2.2 Polyamide Matrices, 3.3 Polypropylene and Polyethylene Matrices and 4.4 Other Nanotubes.
Abstract: 1. Bulk Metal and Ceramics Nanocomposites (Pulickel M. Ajayan).1.1 Introduction.1.2 Ceramic/Metal Nanocomposites.1.2.1 Nanocomposites by Mechanical Alloying.1.2.2 Nanocomposites from SolGel Synthesis.1.2.3 Nanocomposites by Thermal Spray Synthesis.1.3 Metal Matrix Nanocomposites.1.4 Bulk Ceramic Nanocomposites for Desired Mechanical Properties.1.5 Thin-Film Nanocomposites: Multilayer and Granular Films.1.6 Nanocomposites for Hard Coatings.1.7 Carbon Nanotube-Based Nanocomposites.1.8 Functional Low-Dimensional Nanocomposites.1.8.1 Encapsulated Composite Nanosystems.1.8.2 Applications of Nanocomposite Wires.1.8.3 Applications of Nanocomposite Particles.1.9 Inorganic Nanocomposites for Optical Applications.1.10 Inorganic Nanocomposites for Electrical Applications.1.11 Nanoporous Structures and Membranes: Other Nanocomposites.1.12 Nanocomposites for Magnetic Applications.1.12.1 Particle-Dispersed Magnetic Nanocomposites.1.12.2 Magnetic Multilayer Nanocomposites.1.12.2.1 Microstructure and Thermal Stability of Layered Magnetic Nanocomposites.1.12.2.2 Media Materials.1.13 Nanocomposite Structures having Miscellaneous Properties.1.14 Concluding Remarks on Metal/Ceramic Nanocomposites.2. Polymer-based and Polymer-filled Nanocomposites (Linda S. Schadler).2.1 Introduction.2.2 Nanoscale Fillers.2.2.1 Nanofiber or Nanotube Fillers.2.2.1.1 Carbon Nanotubes.2.2.1.2 Nanotube Processing.2.2.1.3 Purity.2.2.1.4 Other Nanotubes.2.2.2 Plate-like Nanofillers.2.2.3 Equi-axed Nanoparticle Fillers.2.3 Inorganic FillerPolymer Interfaces.2.4 Processing of Polymer Nanocomposites.2.4.1 Nanotube/Polymer Composites.2.4.2 Layered FillerPolymer Composite Processing.2.4.2.1 Polyamide Matrices.2.4.2.2 Polyimide Matrices.2.4.2.3 Polypropylene and Polyethylene Matrices.2.4.2.4 Liquid-Crystal Matrices.2.4.2.5 Polymethylmethacrylate/Polystyrene Matrices.2.4.2.6 Epoxy and Polyurethane Matrices.2.4.2.7 Polyelectrolyte Matrices.2.4.2.8 Rubber Matrices.2.4.2.9 Others.2.4.3 Nanoparticle/Polymer Composite Processing.2.4.3.1 Direct Mixing.2.4.3.2 Solution Mixing.2.4.3.3 In-Situ Polymerization.2.4.3.4 In-Situ Particle Processing Ceramic/Polymer Composites.2.4.3.5 In-Situ Particle Processing Metal/Polymer Nanocomposites.2.4.4 Modification of Interfaces.2.4.4.1 Modification of Nanotubes.2.4.4.2 Modification of Equi-axed Nanoparticles.2.4.4.3 Small-Molecule Attachment.2.4.4.4 Polymer Coatings.2.4.4.5 Inorganic Coatings.2.5 Properties of Composites.2.5.1 Mechanical Properties.2.5.1.1 Modulus and the Load-Carrying Capability of Nanofillers.2.5.1.2 Failure Stress and Strain Toughness.2.5.1.3 Glass Transition and Relaxation Behavior.2.5.1.4 Abrasion and Wear Resistance.2.5.2 Permeability.2.5.3 Dimensional Stability.2.5.4 Thermal Stability and Flammability.2.5.5 Electrical and Optical Properties.2.5.5.1 Resistivity, Permittivity, and Breakdown Strength.2.5.5.2 Optical Clarity.2.5.5.3 Refractive Index Control.2.5.5.4 Light-Emitting Devices.2.5.5.5 Other Optical Activity.2.6 Summary.3. Natural Nanobiocomposites, Biomimetic Nanocomposites, and Biologically Inspired Nanocomposites (Paul V. Braun).3.1 Introduction.3.2 Natural Nanocomposite Materials.3.2.1 Biologically Synthesized Nanoparticles.3.2.2 Biologically Synthesized Nanostructures.3.3 Biologically Derived Synthetic Nanocomposites.3.3.1 Protein-Based Nanostructure Formation.3.3.2 DNA-Templated Nanostructure Formation.3.3.3 Protein Assembly.3.4 Biologically Inspired Nanocomposites.3.4.1 Lyotropic Liquid-Crystal Templating.3.4.2 Liquid-Crystal Templating of Thin Films.3.4.3 Block-Copolymer Templating.3.4.4 Colloidal Templating.3.5 Summary.4. Modeling of Nanocomposites (Catalin Picu and Pawel Keblinski).4.1 Introduction The Need For Modeling.4.2 Current Conceptual Frameworks.4.3 Multiscale Modeling.4.4 Multiphysics Aspects.4.5 Validation.Index.

910 citations


Journal ArticleDOI
TL;DR: Available data suggest that resin bonding to these materials is less predictable and requires substantially different bonding methods than to silica-based ceramics, and further in vitro studies, as well as controlled clinical trials, are needed.
Abstract: Current ceramic materials offer preferred optical properties for highly esthetic restorations. The inherent brittleness of some ceramic materials, specific treatment modalities, and certain clinical situations require resin bonding of the completed ceramic restoration to the supporting tooth structures for long-term clinical success. This article presents a literature review on the resin bond to dental ceramics. A PubMed database search was conducted for in vitro studies pertaining to the resin bond to ceramic materials. The search was limited to peer-reviewed articles published in English between 1966 and 2001. Although the resin bond to silica-based ceramics is well researched and documented, few in vitro studies on the resin bond to high-strength ceramic materials were identified. Available data suggest that resin bonding to these materials is less predictable and requires substantially different bonding methods than to silica-based ceramics. Further in vitro studies, as well as controlled clinical trials, are needed.

910 citations


Journal ArticleDOI
TL;DR: In this article, various amounts of micro- and nano-scale particles (calcium silicate CaSiO3, 4-15 μm, alumina Al2O3 13 nm) were systematically introduced into an epoxy polymer matrix for reinforcement purposes.

730 citations


Journal ArticleDOI
01 Feb 2003-Wear
TL;DR: In this article, the effect of micro-dimples on the frictional properties of a silicon nitride ceramic mated with hardened steel was investigated and it was found that the porosity depended greatly on the size and density of the microdimples, whilst the dimple shape did not significantly affect the friction coefficient regardless of rounded or angular profiles.

640 citations


Journal ArticleDOI
TL;DR: Bond strengths of the luting cement tested on the dental ceramics following surface conditioning methods varied in accordance with the ceramic types, and hydrofluoric acid gel was effective mostly on the ceramic having glassy matrix in their structures.

618 citations


Book
31 Jan 2003
TL;DR: In this paper, the authors describe some of the processing techniques for CMCs, followed by a description of some salient characteristics of CMC composites regarding interface and mechanical properties and, in particular, the various possible toughness mechanisms.
Abstract: Ceramic materials in general have a very attractive package of properties: high strength and high stiffness at very high temperatures, chemical inertness, low density, and so on. This attractive package is marred by one deadly flaw, namely, an utter lack of toughness. They are prone to catastrophic failures in the presence of flaws (surface or internal). They are extremely susceptible to thermal shock and are easily damaged during fabrication and/or service. It is therefore understandable that an overriding consideration in ceramic matrix composites (CMCs) is to toughen the ceramics by incorporating fibers in them and thus exploit the attractive high-temperature strength and environmental resistance of ceramic materials without risking a catastrophic failure. It is worth pointing out at the very outset that there are certain basic differences between CMCs and other composites. The general philosophy in nonceramic matrix composites is to have the fiber bear a greater proportion of the applied load. This load partitioning depends on the ratio of fiber and matrix elastic moduli, Ef/Em. In nonceramic matrix composites, this ratio can be very high, while in CMCs, it is rather low and can be as low as unity; think of alumina fiber reinforced alumina matrix composite. Another distinctive point regarding CMCs is that because of limited matrix ductility and generally high fabrication temperature, thermal mismatch between components has a very important bearing on CMC performance. The problem of chemical compatibility between components in CMCs has ramifications similar to those in, say, MMCs. We first describe some of the processing techniques for CMCs, followed by a description of some salient characteristics of CMCs regarding interface and mechanical properties and, in particular, the various possible toughness mechanisms, and finally a description of some applications of CMCs.

509 citations


Journal ArticleDOI
11 Apr 2003-Science
TL;DR: It is shown that reversible strain amplitudes comparable to those of commercial piezoceramics can be induced in metals by introducing a continuous network of nanometer-sized pores with a high surface area and by controlling the surface electronic charge density through an applied potential relative to an electrolyte impregnating the pores.
Abstract: Dimension changes on the order of 0.1% or above in response to an applied voltage have been reported for many types of materials, including ceramics, polymers, and carbon nanostructures, but not, so far, for metals. We show that reversible strain amplitudes comparable to those of commercial piezoceramics can be induced in metals by introducing a continuous network of nanometer-sized pores with a high surface area and by controlling the surface electronic charge density through an applied potential relative to an electrolyte impregnating the pores.

470 citations


Journal ArticleDOI
TL;DR: In this paper, a survey of the material properties that govern the performance of mixed-conducting membranes in real operating conditions and highlights significant developments in the field is presented, where the authors mainly focus on material properties.

Journal ArticleDOI
TL;DR: In this paper, the authors proposed that the interconnect metal or alloy should possess the following properties: (i) good surface stability (resistance to oxidation, hot corrosion, and carburization) in both cathodic (air) and anodic (fuel) atmospheres; (ii) thermal expansion matching to the ceramic PEN (positive cathode-electrolyte-negative anode) and seal materials (as least for a rigid seal design); (iii) high electrical conductivity through both the bulk material and in-situ formed oxide scales; (
Abstract: Over the past several years, the steady reduction in SOFC operating temperatures to the intermediate range of 700~850oC [1] has made it feasible for lanthanum chromite to be supplanted by metals or alloys as the interconnect materials. Compared to doped lanthanum chromite, metals or alloys offer significantly lower raw material and fabrication costs. However, to be a durable and reliable, a metal or alloy has to satisfy several functional requirements specific to the interconnect under SOFC operating conditions. Specifically, the interconnect metal or alloy should possess the following properties: (i) Good surface stability (resistance to oxidation, hot corrosion, and carburization) in both cathodic (air) and anodic (fuel) atmospheres; (ii) Thermal expansion matching to the ceramic PEN (positive cathode-electrolyte-negative anode) and seal materials (as least for a rigid seal design); (iii) High electrical conductivity through both the bulk material and in-situ formed oxide scales; (iv) Bulk and interfacial thermal mechanical reliability and durability at the operating temperature; (v) Compatibility with other materials in contact with interconnects such as seals and electrical contact materials.

Journal ArticleDOI
TL;DR: In this paper, a lead-free piezoelectric ceramic ternary system based on bismuth sodium titanate, (Bi1/2Na 1/2)TiO3 (BNT)-bismuth potassium titanate (BKT) - barium titanate BaTiO 3 (BT) near the morphotropic phase boundary (MPB) between the tetragonal and rhombohedral phases has been investigated.
Abstract: A lead-free piezoelectric ceramic ternary system based on bismuth sodium titanate, (Bi1/2Na1/2)TiO3 (BNT) - bismuth potassium titanate (Bi1/2K1/2)TiO3 (BKT) - barium titanate BaTiO3 (BT) near the morphotropic phase boundary (MPB) between the tetragonal and rhombohedral phases has been investigated. In the case of a(Bi1/2Na1/2)TiO3–bBaTiO3–c(Bi1/2K1/2)TiO3 [BNBK(100a/100b/100c)] solid solution ceramics, the highest piezoelectric constant d33=191 pC/N, Curie temperature, Tc=301°C, electromechanical coupling factor, k33=0.56 and dielectric constant, e33T/e0=1141 are observed for the BNBK(85.2/2.8/12) composition which has a tetragonal phase near the MPB. The d33 value is the highest so far reported for all lead-free piezoelectric ceramics with Tc>300°C. The BNT-BKT-BT ternary ceramics system sintered at 1200°C for 2 h in air has a pure perovskite structure and a high density more than 95% of the theoretical density.

Journal ArticleDOI
TL;DR: For planar solid oxide fuel cell (SOFC) designs, ceramic as well as metallic materials are being considered as construction materials for the interconnectors as discussed by the authors, however, the specific combination of properties required for a SOFC interconnector will necessitate the development of a new, specifically designed steel or the modification of an existing commercial st...
Abstract: For planar solid oxide fuel cell (SOFC) designs, ceramic as well as metallic materials are being considered as construction materials for the interconnectors. Compared to the ceramics, mostly compounds on the basis of La-chromite, metallic materials have the advantage of easier fabricability, lower costs as well as higher heat and electrical conductivity. Based on the requirements in respect to oxidation resistance, low thermal expansion coefficient and electrical conductivity of surface oxide scales, Cr-based alloys and high-Cr ferritic steels seem to be the most promising metallic interconnector materials. Whereas Cr-based alloys have recently especially been developed for SOFC application, a large number of ferritic steels are commercially available in a wide range of compositions. However, it seems that the specific combination of properties required for a SOFC interconnector will necessitate the development of a new, specifically designed steel or the modification of an existing commercial st...

Journal ArticleDOI
TL;DR: In this paper, commercial corundum powder and a liquid-shaping approach are used for manufacturing complex hollow components and large flat windows of sintered and hot isostatically pressed Al2O3 ceramics having grain sizes of 0.4-0.6 μm at relative densities of >99.9%.
Abstract: Commercial corundum powder and a liquid-shaping approach are used for manufacturing complex hollow components and large flat windows of sintered and hot isostatically pressed Al2O3 ceramics having grain sizes of 0.4–0.6 μm at relative densities of >99.9%. High macrohardness (HV10 = 20–21 GPa) and four-point bending strength (600–700 MPa; 750–900 MPa in three-point bending) are associated with a real in-line transmission of 55%–65% through polished plates. The submicrometer microstructure and the optical properties can be retained for use at >1100°C using dopants that shift the sintering temperature to high values without additional grain growth.

Journal ArticleDOI
TL;DR: Improved mechanical properties of Empress 2 and experimental ceramic over those of IPS Empress were attributed to the nature and amount of their crystalline content lithium disilicate.
Abstract: Statement of Problem. Before the release of an advanced ceramic material, independent assessment of its strength, elastic modulus, and phase composition is necessary for comparison with peer materials. Purpose. This study compared the biaxial flexural strength, elastic moduli, and crystalline phases of IPS Empress and Empress 2 with a new experimental ceramic. Material and Methods. Twenty standardized disc specimens (14 × 1.1 mm) per material were used to measure the biaxial strength. With a universal testing machine, each specimen was supported on 3 balls and loaded with a piston at a crosshead speed of 0.5 mm/min until fracture. Three standardized bars (30 × 12.75 × 1.1 mm) for each material were prepared and excited with an impulse tool. The resonant frequencies (Hz) of the bars were used to calculate the elastic moduli with the equation suggested by the standard ASTM (C 1259-94). X-ray diffraction with Cu Kα at a diffraction angle from 20 to 40 degrees was used to identify the crystalline phases by means of a diffractometer attached to computer software. The data were analyzed with 1-way analysis of variance followed by pairwise t tests ( P Results. Mean biaxial strengths were 175 ± 32, 407 ± 45, and 440 ± 55 MPa for IPS Empress, Empress 2, and the experimental ceramic, respectively. Elastic modulus results were 65, 103, and 91 GPa for the same materials, respectively. There was no significant difference in strength and elastic modulus between Empress 2 and the experimental ceramic. Both materials demonstrated a significantly higher elastic modulus and strength than IPS Empress. X-ray diffraction revealed leucite as the main crystalline phase for IPS Empress and lithium disilicate for both Empress 2 and the experimental ceramic. Conclusion. Within the limitations of this study, the improved mechanical properties of Empress 2 and experimental ceramic over those of IPS Empress were attributed to the nature and amount of their crystalline content lithium disilicate. (J Prosthet Dent 2003;89:347-80.)

Journal ArticleDOI
TL;DR: In this article, the influence of the dopants on the residual stress, carrier concentration and the secondary phases was studied by means of Raman spectroscopy, showing that both the tensile residual stress and the free carrier concentration were increased with doping.
Abstract: The ZnO-based ceramic films doped with different dopants were prepared by a novel sol–gel process. The phase composition of the films was determined via X-ray diffraction analysis. The influence of the dopants on the residual stress, carrier concentration and the secondary phases was studied by means of Raman spectroscopy. Raman spectra show that the E2 phonon frequency shifts 3–6 cm−1 to lower wavenumbers, whereas the A1(LO) mode shifts 3.2–6.1 cm−1 to higher wavenumbers when the films were doped with Bi2O3, Sb2O3, MnO, Cr2O3, Y2O3 and Al2O3, indicating that both the tensile residual stress and the free carrier concentration were increased with doping. The larger stress is considered to originate from the lattice distortion, which was caused by the substitution of the doping ions for Zn2+, and the lattice mismatch between the ZnO crystals and the interfacial phases. The secondary phases were affected markedly by both Y2O3 and Al2O3. The intensity and the position of Raman bands of Zn7Sb2O12 and ZnCr2O4 phases changed obviously. The films showed remarkable nonlinear voltage–current characteristics, but the nonlinear coefficient of the films decreased evidently as the addition of Y2O3 or Al2O3.

Journal ArticleDOI
TL;DR: In this paper, a dense ceramic oxide coating approximately 100 mm thick was prepared on a 7075 Al alloy by microarc oxidation in an alkali-silicate electrolytic solution.
Abstract: A dense ceramic oxide coating approximately 100 mm thick was prepared on a 7075 Al alloy by microarc oxidation in an alkali-silicate electrolytic solution. Coating thickness and surface roughness (R ) were measured during coating formation. The a influence of current density, electrolyte temperature and inter-electrode distance on coating kinetics was investigated. Microstructure and phase compositions were analysed using scanning electron microscopy (SEM) and X-ray diffraction (XRD). The microhardness of the coating was also measured. The tribological performance of the coatings was evaluated using a dry sand abrasion test, a solid particle erosion test and a pin-on-disc sliding wear test. In addition, the results are compared to detonation-sprayed alumina (Al O ) coating and bulk Al O . The basic mechanism of microarc coating formation is explained. The material removal 23 2 3 mechanism during solid particle erosion was investigated, and structure–property correlations were established. 2002 Elsevier Science B.V. All rights reserved.

Journal ArticleDOI
TL;DR: To test the hypothesis that the Weibull moduli of single- and multilayer ceramics are controlled primarily by the structural reliability of the core ceramic, seven groups of 20 bar specimens were made from the following materials.

Journal ArticleDOI
TL;DR: In this article, the fracture toughness of zirconia, alumina, and silicon nitride ceramics, single crystals, silicon carbide as well as silicon-nitride ceramic particulate composites, silicon-nide laminated composites and other materials were studied by a single edge V-notched beam (SEVNB) method.

Journal ArticleDOI
TL;DR: In this paper, the main results generated in a German National Science Foundation (DFG) program on projects concerned with functionally graded materials applied to optimize the thermal, wear and corrosion properties of metallic and ceramic materials.
Abstract: The present paper summarizes the main results generated in a German National Science Foundation (DFG) program on projects concerned with functionally graded materials applied to optimize the thermal, wear and corrosion properties of metallic and ceramic materials. Thermal barrier coatings deposited onto Cu substrates by pulsed laser deposition showed improved spallation behavior by a graded lamella microstructure with improved interface fracture toughness. A particle-hardened graded surface structure improved the wear resistance of plasma sprayed thermal barriers. By means of evaporation techniques a graded bonding area was manufactured with a high potential of lifetime improvement. For non-oxide ceramics graded coatings based on Si 3 N 4 and mullite led to improved oxidation resistance of the substrate material. Graded TiC–TiN thin films allowed to improve the wear resistance of cutting tool alloys with good adhesion to the substrate material. On light metal alloys, the limits of grading with respect to corrosion protection as well as wear were determined. Graded layers of arc-sprayed titanium with in situ produced particles or welded alloy gradients led to improved wear characteristics. Stress profiles in graded layers were analyzed with the help of a modified X-ray diffraction analysis.

Journal ArticleDOI
TL;DR: In this paper, structural factors related to the ceramic support and the metallic film chemical composition are shown to be responsible for the differences in membrane performance, such as the support pore size, which controls the required metal film thickness to insure a leak-free membrane and the internal structure of the support (symmetric or asymmetric) which changes the mass transfer resistance.

Journal ArticleDOI
TL;DR: In this article, the Guglielmi adsorption mechanism was applied to the electroplating of the ultra-fine SiC with Ni, and the embedded SiC concentration can be increased either by increasing electrical current density or by raising the pH of the suspension to 5.

Journal ArticleDOI
TL;DR: The influence of grain boundaries on heat transfer through polycrystalline alumina has been investigated between 20° and 500°C using the laser-flash technique as mentioned in this paper, and the average thermal resistance of a grain boundary has been evaluated to be 1.3 × 10−8 m2·K·W−1 in dense ceramics.
Abstract: The influence of grain boundaries on heat transfer through polycrystalline alumina has been investigated between 20° and 500°C. The thermal conductivities of small-grained porous ceramics and large-grained dense ceramics have been measured using the laser-flash technique. Two methods have been developed to assess the average thermal resistance of a grain boundary. The first method is based on the comparison of room-temperature thermal conductivities for dense ceramics that have various average grain sizes. This method yields a value of 0.9 × 10−8 m2·K·W−1. The second method, particularly suitable for porous ceramics, is based on the extrapolation of the inverse of the thermal conductivity versus temperature to give an intercept with the axis at T= 0 K. This value is attributed to the thermal resistance of grain boundaries. By taking into account the influence of the pore content using an effective medium theory, the average thermal resistance of a grain boundary has been evaluated to be 1.3 × 10−8 m2·K·W−1 in dense alumina and 2.2 × 10−8 m2·K·W−1 in alumina containing a pore volume fraction of 0.3.

Patent
12 Nov 2003
TL;DR: An apparatus package for high-temperature thermal applications for ball grid array semiconductor devices and a method of packaging such devices are described in this article. But the package is not suitable for high temperature applications.
Abstract: An apparatus package for high-temperature thermal applications for ball grid array semiconductor devices and a method of packaging ball grid array semiconductor devices.

Journal ArticleDOI
TL;DR: Both materials exhibited fracture toughness anisotropy following pressing and demonstrated improved fracture toughness and reduced hardness compared with IPS-Empress P<0.05(ANOVA), which should be beneficial for clinical applications.

Journal ArticleDOI
TL;DR: In this article, a pseudopotential-based density functional (DFT) analysis of metal carbide ceramics was performed to predict the atomic structure, bonding, and ideal work of adhesion (Wadideal) of the interface between a TiC(100) coating and a bcc Fe(110) substrate.
Abstract: Metal carbide ceramics offer potential as protective coatings for steels. Here we report a pseudopotential-based density functional (DFT) investigation of one such coating, wherein we predict the atomic structure, bonding, and the ideal work of adhesion (Wadideal) of the interface between a TiC(100) coating and a bcc Fe(110) substrate. Calibration of the DFT approximations used yields TiC and Fe bulk properties in reasonable agreement with experiment. Subsequent characterization of the low-index TiC and Fe surfaces reveals that all surfaces retain near bulk termination, in agreement with experiment. Stabilities of both TiC and Fe surfaces increase with their packing densities, i.e., (110)<(111)<(100) for TiC and (111)<(100)<(110) for bcc Fe. We estimate that the minimum critical stress required for crack propagation in bcc Fe is 27% larger than that in TiC. The TiC(100)/Fe(110) interface exhibits a lattice mismatch of ∼2.1%, leading to a smooth interface with only a small structural relaxation, except for...

Journal ArticleDOI
01 Feb 2003-Fuel
TL;DR: In this article, the effect of firing at temperatures between 1130 and 1190°C on the density, water accessible porosity, mineralogy and microstructure of sintered samples is reported.

Journal ArticleDOI
TL;DR: In this paper, two types of ceramic cutting tools namely Ti[C,N] mixed alumina ceramic cutting tool and zirconia toughened alumina cutting tool are used for their investigation.
Abstract: Alumina based ceramic cutting tool is an attractive alternative for carbide tools in the machining of steel in its hardened condition. These ceramic cutting tools can machine with high cutting speed and produce good surface finish. The wear mechanism of these ceramic cutting tools should be properly understood for greater utilization. Two types of ceramic cutting tools namely Ti[C,N] mixed alumina ceramic cutting tool and zirconia toughened alumina ceramic cutting tool are used for our investigation. The machinability of hardened steel was evaluated by measurements of tool wear, cutting forces and surface finish of the work piece. These alumina based ceramic cutting tool materials produce good surface finish in the machining of hardened steel. In this paper an attempt is made to analyse the important wear mechanisms like abrasive wear, adhesive wear and diffusion wear of these ceramic cutting tool materials and the performance of these ceramic cutting tools related to the surface finish is also discussed here.

Journal ArticleDOI
01 Feb 2003-Wear
TL;DR: In this article, a three-dimensional finite element model for describing the elastic and plastic behavior and for calculating the stresses and strains has been developed, which shows that the maximum first principal tensile stress is generated in the back-tail region at the border of the scratch groove, creating the first visible angular cracks in the coating.