scispace - formally typeset
Search or ask a question

Showing papers on "Complex network published in 2011"


Journal ArticleDOI
12 May 2011-Nature
TL;DR: In this article, the authors developed analytical tools to study the controllability of an arbitrary complex directed network, identifying the set of driver nodes with time-dependent control that can guide the system's entire dynamics.
Abstract: The ultimate proof of our understanding of natural or technological systems is reflected in our ability to control them. Although control theory offers mathematical tools for steering engineered and natural systems towards a desired state, a framework to control complex self-organized systems is lacking. Here we develop analytical tools to study the controllability of an arbitrary complex directed network, identifying the set of driver nodes with time-dependent control that can guide the system's entire dynamics. We apply these tools to several real networks, finding that the number of driver nodes is determined mainly by the network's degree distribution. We show that sparse inhomogeneous networks, which emerge in many real complex systems, are the most difficult to control, but that dense and homogeneous networks can be controlled using a few driver nodes. Counterintuitively, we find that in both model and real systems the driver nodes tend to avoid the high-degree nodes.

2,889 citations


Journal ArticleDOI
TL;DR: Recent progress about link prediction algorithms is summarized, emphasizing on the contributions from physical perspectives and approaches, such as the random-walk-based methods and the maximum likelihood methods.
Abstract: Link prediction in complex networks has attracted increasing attention from both physical and computer science communities. The algorithms can be used to extract missing information, identify spurious interactions, evaluate network evolving mechanisms, and so on. This article summaries recent progress about link prediction algorithms, emphasizing on the contributions from physical perspectives and approaches, such as the random-walk-based methods and the maximum likelihood methods. We also introduce three typical applications: reconstruction of networks, evaluation of network evolving mechanism and classification of partially labeled networks. Finally, we introduce some applications and outline future challenges of link prediction algorithms.

2,530 citations


Journal ArticleDOI
TL;DR: This work demonstrates how the generalization of blockmodels to incorporate this missing element leads to an improved objective function for community detection in complex networks and proposes a heuristic algorithm forcommunity detection using this objective function or its non-degree-corrected counterpart.
Abstract: Stochastic blockmodels have been proposed as a tool for detecting community structure in networks as well as for generating synthetic networks for use as benchmarks. Most blockmodels, however, ignore variation in vertex degree, making them unsuitable for applications to real-world networks, which typically display broad degree distributions that can significantly affect the results. Here we demonstrate how the generalization of blockmodels to incorporate this missing element leads to an improved objective function for community detection in complex networks. We also propose a heuristic algorithm for community detection using this objective function or its non-degree-corrected counterpart and show that the degree-corrected version dramatically outperforms the uncorrected one in both real-world and synthetic networks.

2,024 citations


Journal ArticleDOI
TL;DR: This work investigates the role of modularity in human learning by identifying dynamic changes of modular organization spanning multiple temporal scales and develops a general statistical framework for the identification of modular architectures in evolving systems.
Abstract: Human learning is a complex phenomenon requiring flexibility to adapt existing brain function and precision in selecting new neurophysiological activities to drive desired behavior. These two attributes—flexibility and selection—must operate over multiple temporal scales as performance of a skill changes from being slow and challenging to being fast and automatic. Such selective adaptability is naturally provided by modular structure, which plays a critical role in evolution, development, and optimal network function. Using functional connectivity measurements of brain activity acquired from initial training through mastery of a simple motor skill, we investigate the role of modularity in human learning by identifying dynamic changes of modular organization spanning multiple temporal scales. Our results indicate that flexibility, which we measure by the allegiance of nodes to modules, in one experimental session predicts the relative amount of learning in a future session. We also develop a general statistical framework for the identification of modular architectures in evolving systems, which is broadly applicable to disciplines where network adaptability is crucial to the understanding of system performance.

1,529 citations


Journal ArticleDOI
Olaf Sporns1
TL;DR: Current empirical efforts toward generating a network map of the human brain, the human connectome, are reviewed, and how the connectome can provide new insights into the organization of the brain's structural connections and their role in shaping functional dynamics are explored.
Abstract: The human brain is a complex network. An important first step toward understanding the function of such a network is to map its elements and connections, to create a comprehensive structural description of the network architecture. This paper reviews current empirical efforts toward generating a network map of the human brain, the human connectome, and explores how the connectome can provide new insights into the organization of the brain's structural connections and their role in shaping functional dynamics. Network studies of structural connectivity obtained from noninvasive neuroimaging have revealed a number of highly nonrandom network attributes, including high clustering and modularity combined with high efficiency and short path length. The combination of these attributes simultaneously promotes high specialization and high integration within a modular small-world architecture. Structural and functional networks share some of the same characteristics, although their relationship is complex and nonlinear. Future studies of the human connectome will greatly expand our knowledge of network topology and dynamics in the healthy, developing, aging, and diseased brain.

1,173 citations


Journal ArticleDOI
TL;DR: This work introduces a novel architecture that reduces the usually required large number of elements to a single nonlinear node with delayed feedback and proves that delay-dynamical systems, even in their simplest manifestation, can perform efficient information processing.
Abstract: Novel methods for information processing are highly desired in our information-driven society. Inspired by the brain's ability to process information, the recently introduced paradigm known as 'reservoir computing' shows that complex networks can efficiently perform computation. Here we introduce a novel architecture that reduces the usually required large number of elements to a single nonlinear node with delayed feedback. Through an electronic implementation, we experimentally and numerically demonstrate excellent performance in a speech recognition benchmark. Complementary numerical studies also show excellent performance for a time series prediction benchmark. These results prove that delay-dynamical systems, even in their simplest manifestation, can perform efficient information processing. This finding paves the way to feasible and resource-efficient technological implementations of reservoir computing.

1,121 citations


Journal ArticleDOI
TL;DR: Data on the time-resolved face-to-face proximity of individuals in large-scale real-world scenarios is analyzed to investigate the dynamics of a susceptible-infected model for epidemic spreading that unfolds on the dynamical networks of human proximity.

853 citations


Journal ArticleDOI
TL;DR: This study generalizes measures of modularity and centrality to fully connected and weighted complex networks, describes the detection of degenerate high-modularity partitions of these networks, and introduces a weighted-connectivity null model of these Networks.

807 citations


Journal ArticleDOI
TL;DR: It is shown that with small changes in the network structure (low cost) the robustness of diverse networks can be improved dramatically whereas their functionality remains unchanged and is useful not only for improving significantly with low cost the robustity of existing infrastructures but also for designing economically robust network systems.
Abstract: Terrorist attacks on transportation networks have traumatized modern societies. With a single blast, it has become possible to paralyze airline traffic, electric power supply, ground transportation or Internet communication. How and at which cost can one restructure the network such that it will become more robust against a malicious attack? We introduce a new measure for robustness and use it to devise a method to mitigate economically and efficiently this risk. We demonstrate its efficiency on the European electricity system and on the Internet as well as on complex networks models. We show that with small changes in the network structure (low cost) the robustness of diverse networks can be improved dramatically whereas their functionality remains unchanged. Our results are useful not only for improving significantly with low cost the robustness of existing infrastructures but also for designing economically robust network systems.

793 citations


Proceedings ArticleDOI
28 Mar 2011
TL;DR: In this paper, a layered label propagation (LBP) algorithm is proposed to reorder very large graphs (billions of nodes) using task decomposition to perform aggressively on multi-core architecture, making it possible to compress graphs of more than 600 millions nodes in a few hours.
Abstract: We continue the line of research on graph compression started with WebGraph, but we move our focus to the compression of social networks in a proper sense (e.g., LiveJournal): the approaches that have been used for a long time to compress web graphs rely on a specific ordering of the nodes (lexicographical URL ordering) whose extension to general social networks is not trivial. In this paper, we propose a solution that mixes clusterings and orders, and devise a new algorithm, called Layered Label Propagation, that builds on previous work on scalable clustering and can be used to reorder very large graphs (billions of nodes). Our implementation uses task decomposition to perform aggressively on multi-core architecture, making it possible to reorder graphs of more than 600 millions nodes in a few hours.Experiments performed on a wide array of web graphs and social networks show that combining the order produced by the proposed algorithm with the WebGraph compression framework provides a major increase in compression with respect to all currently known techniques, both on web graphs and on social networks. These improvements make it possible to analyse in main memory significantly larger graphs.

637 citations


Journal ArticleDOI
TL;DR: The success of new scientific areas can be assessed by their potential in contributing to new theoretical approaches and in applications to real-world problems as mentioned in this paper, and complex networks have fared extremely well in both these aspects, with their sound theoretical basis being developed over the years and with a variety of applications.
Abstract: The success of new scientific areas can be assessed by their potential in contributing to new theoretical approaches and in applications to real-world problems. Complex networks have fared extremely well in both of these aspects, with their sound theoretical basis being developed over the years and with a variety of applications. In this survey, we analyze the applications of complex networks to real-world problems and data, with emphasis in representation, analysis and modeling. A diversity of phenomena are surveyed, which may be classified into no less than 11 areas, providing a clear indication of the impact of the field of complex networks.

Book
17 Dec 2011
TL;DR: The second part of this book is devoted to the analysis of genetic, protein residue, protein-protein interaction, intercellular, ecological and socio-economic networks, including important breakthroughs as well as examples of the misuse of structural concepts.
Abstract: This book deals with the analysis of the structure of complex networks by combining results from graph theory, physics, and pattern recognition. The book is divided into two parts. 11 chapters are dedicated to the development of theoretical tools for the structural analysis of networks, and 7 chapters are illustrating, in a critical way, applications of these tools to real-world scenarios. The first chapters provide detailed coverage of adjacency and metric and topological properties of networks, followed by chapters devoted to the analysis of individual fragments and fragment-based global invariants in complex networks. Chapters that analyse the concepts of communicability, centrality, bipartivity, expansibility and communities in networks follow. The second part of this book is devoted to the analysis of genetic, protein residue, protein-protein interaction, intercellular, ecological and socio-economic networks, including important breakthroughs as well as examples of the misuse of structural concepts.

Journal ArticleDOI
TL;DR: Simulations show that rumor centrality outperforms distance centrality in finding rumor sources in networks which are not tree-like, and it is proved that on trees, the rumor center and distance center are equivalent, but on general networks, they may differ.
Abstract: We provide a systematic study of the problem of finding the source of a rumor in a network. We model rumor spreading in a network with the popular susceptible-infected (SI) model and then construct an estimator for the rumor source. This estimator is based upon a novel topological quantity which we term rumor centrality. We establish that this is a maximum likelihood (ML) estimator for a class of graphs. We find the following surprising threshold phenomenon: on trees which grow faster than a line, the estimator always has nontrivial detection probability, whereas on trees that grow like a line, the detection probability will go to 0 as the network grows. Simulations performed on synthetic networks such as the popular small-world and scale-free networks, and on real networks such as an internet AS network and the U.S. electric power grid network, show that the estimator either finds the source exactly or within a few hops of the true source across different network topologies. We compare rumor centrality to another common network centrality notion known as distance centrality. We prove that on trees, the rumor center and distance center are equivalent, but on general networks, they may differ. Indeed, simulations show that rumor centrality outperforms distance centrality in finding rumor sources in networks which are not tree-like.

Journal ArticleDOI
TL;DR: These findings represent the first abrupt synchronization transition in complex networks and provide a deeper understanding of the microscopic roots of explosive critical phenomena.
Abstract: Explosive collective phenomena have attracted much attention since the discovery of an explosive percolation transition. In this Letter, we demonstrate how an explosive transition shows up in the synchronization of scale-free networks by incorporating a microscopic correlation between the structural and the dynamical properties of the system. The characteristics of the explosive transition are analytically studied in a star graph reproducing the results obtained in synthetic networks. Our findings represent the first abrupt synchronization transition in complex networks and provide a deeper understanding of the microscopic roots of explosive critical phenomena.

Posted Content
TL;DR: In this article, the authors present a survey of the most important scientific studies investigating the properties of different power grid infrastructures using complex network analysis techniques and methodologies and explore the most relevant literature works considering general topological properties, differences between the various graph-related indicators and reliability aspects.
Abstract: The statistical tools of Complex Network Analysis are of great use to understand salient properties of complex systems, may these be natural or pertaining human engineered infrastructures. One of these that is receiving growing attention for its societal relevance is that of electricity distribution. In this paper, we present a survey of the most important scientific studies investigating the properties of different Power Grids infrastructures using Complex Network Analysis techniques and methodologies. We categorize and explore the most relevant literature works considering general topological properties, differences between the various graph-related indicators and reliability aspects.

Journal ArticleDOI
TL;DR: This work introduces and evaluates a general model for inference with network data, the Exponential Random Graph Model (ERGM) and several of its recent extensions, and discusses extensions to the model that allow for the analysis of non-binary and longitudinally observed networks.
Abstract: Methods for descriptive network analysis have reached statistical maturity and general acceptance across the social sciences in recent years. However, methods for statistical inference with network data remain fledgling by comparison. We introduce and evaluate a general model for inference with network data, the Exponential Random Graph Model (ERGM) and several of its recent extensions. The ERGM simultaneously allows both inference on covariates and for arbitrarily complex network structures to be modeled. Our contributions are three-fold: beyond introducing the ERGM and discussing its limitations, we discuss extensions to the model that allow for the analysis of non-binary and longitudinally observed networks and show through applications that network-based inference can improve our understanding of political phenomena.

Journal ArticleDOI
TL;DR: This paper investigates another important issue, community discovery, in network analysis, and chooses Nonnegative Matrix Factorization (NMF) as a tool to find the communities because of its powerful interpretability and close relationship between clustering methods.
Abstract: Complex networks exist in a wide range of real world systems, such as social networks, technological networks, and biological networks. During the last decades, many researchers have concentrated on exploring some common things contained in those large networks include the small-world property, power-law degree distributions, and network connectivity. In this paper, we will investigate another important issue, community discovery, in network analysis. We choose Nonnegative Matrix Factorization (NMF) as our tool to find the communities because of its powerful interpretability and close relationship between clustering methods. Targeting different types of networks (undirected, directed and compound), we propose three NMF techniques (Symmetric NMF, Asymmetric NMF and Joint NMF). The correctness and convergence properties of those algorithms are also studied. Finally the experiments on real world networks are presented to show the effectiveness of the proposed methods.

Journal ArticleDOI
TL;DR: This technical note studies the consensus problem for cooperative agents with nonlinear dynamics in a directed network through a combination of the tools of complex analysis, local consensus manifold approach, and Lyapunov methods.
Abstract: This technical note studies the consensus problem for cooperative agents with nonlinear dynamics in a directed network. Both local and global consensus are defined and investigated. Techniques for studying the synchronization in such complex networks are exploited to establish various sufficient conditions for reaching consensus. The local consensus problem is first studied via a combination of the tools of complex analysis, local consensus manifold approach, and Lyapunov methods. A generalized algebraic connectivity is then proposed to study the global consensus problem in strongly connected networks and also in a broad class of networks containing spanning trees, for which ideas from algebraic graph theory, matrix theory, and Lyapunov methods are utilized.

Journal ArticleDOI
TL;DR: A new small-world metric, ω (omega), is proposed, which compares network clustering to an equivalent lattice network and path length to a random network, as Watts and Strogatz originally described.
Abstract: Small-world networks, according to Watts and Strogatz, are a class of networks that are “highly clustered, like regular lattices, yet have small characteristic path lengths, like random graphs.” These characteristics result in networks with unique properties of regional specialization with efficient information transfer. Social networks are intuitive examples of this organization, in which cliques or clusters of friends being interconnected but each person is really only five or six people away from anyone else. Although this qualitative definition has prevailed in network science theory, in application, the standard quantitative application is to compare path length (a surrogate measure of distributed processing) and clustering (a surrogate measure of regional specialization) to an equivalent random network. It is demonstrated here that comparing network clustering to that of a random network can result in aberrant findings and that networks once thought to exhibit small-world properties may not...

Journal ArticleDOI
TL;DR: The aim of this survey is to provide a ‘user manual’ for the community discovery problem and to organize the main categories of community discovery methods based on the definition of community they adopt.
Abstract: Many real-world networks are intimately organized according to a community structure. Much research effort has been devoted to develop methods and algorithms that can efficiently highlight this hidden structure of a network, yielding a vast literature on what is called today community detection. Since network representation can be very complex and can contain different variants in the traditional graph model, each algorithm in the literature focuses on some of these properties and establishes, explicitly or implicitly, its own definition of community. According to this definition, each proposed algorithm then extracts the communities, which typically reflect only part of the features of real communities. The aim of this survey is to provide a ‘user manual’ for the community discovery problem. Given a meta definition of what a community in a social network is, our aim is to organize the main categories of community discovery methods based on the definition of community they adopt. Given a desired definition of community and the features of a problem (size of network, direction of edges, multidimensionality, and so on) this review paper is designed to provide a set of approaches that researchers could focus on. The proposed classification of community discovery methods is also useful for putting into perspective the many open directions for further research. © 2011 Wiley Periodicals, Inc. Statistical Analysis and Data Mining 4: 512–546, 2011 © 2011 Wiley Periodicals, Inc.

Journal ArticleDOI
TL;DR: This work describes the conditions under which very indirect interactions will have a pronounced effect on correlations and population dynamics in random networks, and finds that indirect interactions may lead to a broad distribution of activation levels with low average but highly variable correlations.
Abstract: Networks are becoming a ubiquitous metaphor for the understanding of complex biological systems, spanning the range between molecular signalling pathways, neural networks in the brain, and interacting species in a food web. In many models, we face an intricate interplay between the topology of the network and the dynamics of the system, which is generally very hard to disentangle. A dynamical feature that has been subject of intense research in various fields are correlations between the noisy activity of nodes in a network. We consider a class of systems, where discrete signals are sent along the links of the network. Such systems are of particular relevance in neuroscience, because they provide models for networks of neurons that use action potentials for communication. We study correlations in dynamic networks with arbitrary topology, assuming linear pulse coupling. With our novel approach, we are able to understand in detail how specific structural motifs affect pairwise correlations. Based on a power series decomposition of the covariance matrix, we describe the conditions under which very indirect interactions will have a pronounced effect on correlations and population dynamics. In random networks, we find that indirect interactions may lead to a broad distribution of activation levels with low average but highly variable correlations. This phenomenon is even more pronounced in networks with distance dependent connectivity. In contrast, networks with highly connected hubs or patchy connections often exhibit strong average correlations. Our results are particularly relevant in view of new experimental techniques that enable the parallel recording of spiking activity from a large number of neurons, an appropriate interpretation of which is hampered by the currently limited understanding of structure-dynamics relations in complex networks.

Journal ArticleDOI
13 Oct 2011-Nature
TL;DR: A suite of structural and dynamic methods are applied to an ensemble of flowering plant/insect pollinator networks to introduce a new paradox into the study of the persistence of cooperative networks, and potentially address questions about the impact of invasive species in ecological systems and new competitors in economic systems.
Abstract: Nodes in cooperative networks, such as those between plants and their pollinators or service providers and their contractors, form complex networks of interdependences. In these mutualistic networks, nodes that contribute to the nestedness of the network improve its stability. However, this study, using ecological data from 20 plant–pollinator networks and from socioeconomic networks, shows that these same nodes do not reap the benefits. In fact, the nodes that contribute the most to network persistence are also the most vulnerable to extinction. The architecture of mutualistic networks facilitates coexistence of individual participants by minimizing competition relative to facilitation1,2. However, it is not known whether this benefit is received by each participant node in proportion to its overall contribution to network persistence. This issue is critical to understanding the trade-offs faced by individual nodes in a network3,4,5. We address this question by applying a suite of structural and dynamic methods to an ensemble of flowering plant/insect pollinator networks. Here we report two main results. First, nodes contribute heterogeneously to the overall nested architecture of the network. From simulations, we confirm that the removal of a strong contributor tends to decrease overall network persistence more than the removal of a weak contributor. Second, strong contributors to collective persistence do not gain individual survival benefits but are in fact the nodes most vulnerable to extinction. We explore the generality of these results to other cooperative networks by analysing a 15-year time series of the interactions between designer and contractor firms in the New York City garment industry. As with the ecological networks, a firm's survival probability decreases as its individual nestedness contribution increases. Our results, therefore, introduce a new paradox into the study of the persistence of cooperative networks, and potentially address questions about the impact of invasive species in ecological systems and new competitors in economic systems.

Journal ArticleDOI
TL;DR: In this article, the potentials and limitations of the individual methods are discussed and illustrated for paradigmatic examples of dynamical systems as well as for real-world time series, with a special emphasis on methods founded on recurrence plots.
Abstract: Complex networks are an important paradigm of modern complex systems sciences which allows quantitatively assessing the structural properties of systems composed of different interacting entities. During the last years, intensive efforts have been spent on applying network-based concepts also for the analysis of dynamically relevant higher-order statistical properties of time series. Notably, many corresponding approaches are closely related to the concept of recurrence in phase space. In this paper, we review recent methodological advances in time series analysis based on complex networks, with a special emphasis on methods founded on recurrence plots. The potentials and limitations of the individual methods are discussed and illustrated for paradigmatic examples of dynamical systems as well as for real-world time series. Complex network measures are shown to provide information about structural features of dynamical systems that are complementary to those characterized by other methods of time series an...

Proceedings ArticleDOI
01 Nov 2011
TL;DR: A novel strategy to discover the community structure of (possibly, large) networks by exploiting a novel measure of edge centrality, based on the κ-paths, which allows to efficiently compute a edge ranking in large networks in near linear time.
Abstract: In this paper we present a novel strategy to discover the community structure of (possibly, large) networks This approach is based on the well-know concept of network modularity optimization To do so, our algorithm exploits a novel measure of edge centrality, based on the κ-paths This technique allows to efficiently compute a edge ranking in large networks in near linear time Once the centrality ranking is calculated, the algorithm computes the pairwise proximity between nodes of the network Finally, it discovers the community structure adopting a strategy inspired by the well-known state-of-the-art Louvain method (henceforth, LM), efficiently maximizing the network modularity The experiments we carried out show that our algorithm outperforms other techniques and slightly improves results of the original LM, providing reliable results Another advantage is that its adoption is naturally extended even to unweighted networks, differently with respect to the LM

Journal ArticleDOI
TL;DR: In this paper, new synchronization and state estimation problems are considered for an array of coupled discrete time-varying stochastic complex networks over a finite horizon with a novel concept of bounded H∞ synchronization.
Abstract: In this paper, new synchronization and state estimation problems are considered for an array of coupled discrete time-varying stochastic complex networks over a finite horizon. A novel concept of bounded H∞ synchronization is proposed to handle the time-varying nature of the complex networks. Such a concept captures the transient behavior of the time-varying complex network over a finite horizon, where the degree of bounded synchronization is quantified in terms of the H∞-norm. A general sector-like nonlinear function is employed to describe the nonlinearities existing in the network. By utilizing a timevarying real-valued function and the Kronecker product, criteria are established that ensure the bounded H∞ synchronization in terms of a set of recursive linear matrix inequalities (RLMIs), where the RLMIs can be computed recursively by employing available MATLAB toolboxes. The bounded H∞ state estimation problem is then studied for the same complex network, where the purpose is to design a state estimator to estimate the network states through available output measurements such that, over a finite horizon, the dynamics of the estimation error is guaranteed to be bounded with a given disturbance attenuation level. Again, an RLMI approach is developed for the state estimation problem. Finally, two simulation examples are exploited to show the effectiveness of the results derived in this paper.

Book ChapterDOI
Matthew O. Jackson1
01 Jan 2011
TL;DR: An overview of research on social networks and their role in shaping behavior and economic outcomes is provided in this article, which includes discussion of empirical and theoretical analyses of the role of social networks in markets and exchange, learning and diffusion, and network games.
Abstract: In this chapter, I provide an overview of research on social networks and their role in shaping behavior and economic outcomes. I include discussion of empirical and theoretical analyses of the role of social networks in markets and exchange, learning and diffusion, and network games. I also include some background on social network characteristics and measurements, models of network formation, models for the statistical analysis of social networks, as well as community detection. JEL Classification Codes: D85, C72, L14, Z13

Journal ArticleDOI
TL;DR: The communicability measures reviewed in this paper are defined by taking into account all possible routes between two nodes, assigning smaller weights to longer ones and the notion of locality in complex networks is reviewed.
Abstract: A fundamental problem in the study of complex networks is to provide quantitative measures of correlation and information flow between different parts of a system. To this end, several notions of communicability have been introduced and applied to a wide variety of real-world networks in recent years. Several such communicability functions are reviewed in this paper. It is emphasized that communication and correlation in networks can take place through many more routes than the shortest paths, a fact that may not have been sufficiently appreciated in previously proposed correlation measures. In contrast to these, the communicability measures reviewed in this paper are defined by taking into account all possible routes between two nodes, assigning smaller weights to longer ones. This point of view naturally leads to the definition of communicability in terms of matrix functions, such as the exponential, resolvent, and hyperbolic functions, in which the matrix argument is either the adjacency matrix or the graph Laplacian associated with the network. Considerable insight on communicability can be gained by modeling a network as a system of oscillators and deriving physical interpretations, both classical and quantum-mechanical, of various communicability functions. Applications of communicability measures to the analysis of complex systems are illustrated on a variety of biological, physical and social networks. The last part of the paper is devoted to a review of the notion of locality in complex networks and to computational aspects that by exploiting sparsity can greatly reduce the computational efforts for the calculation of communicability functions for large networks.

Journal ArticleDOI
TL;DR: This paper proposes new network resilience metrics that reflect the heterogeneous roles of nodes in supply networks and presents a hybrid and tunable network growth model called Degree and Locality-based Attachment (DLA), in which new nodes make connections based on both degree and locality.
Abstract: In this paper, we study the resilience of supply networks against disruptions and provide insights to supply chain managers on how to construct a resilient supply network from the perspective of complex network topologies. Our goal is to study how different network topologies, which are created from different growth models, affect the network's resilience against both random and targeted disruptions. Of particular interest are situations where the type of disruption is unknown. Using a military logistic network as a case study, we propose new network resilience metrics that reflect the heterogeneous roles (e.g., supply, relay, and demand) of nodes in supply networks. We also present a hybrid and tunable network growth model called Degree and Locality-based Attachment (DLA), in which new nodes make connections based on both degree and locality. Using computer simulations, we compare the resilience of several supply network topologies that are generated with different growth models. The results show that the new resilience metrics can capture important resilience requirements for supply networks very well. We also found that the supply network topology generated by the DLA model provides balanced resilience against both random and targeted disruptions.

Journal ArticleDOI
TL;DR: These findings informed the construction of soft-thresholded networks, replacing the hard thresholding or binarization operation with a continuous mapping of all correlation values to edge weights, suppressing rather than removing weaker connections and avoiding issues related to network fragmentation.

Journal ArticleDOI
TL;DR: It is shown that classic centrality measures from the static setting can be extended in a computationally convenient manner and communicability indices can be computed to summarize the ability of each node to broadcast and receive information.
Abstract: Many natural and technological applications generate time-ordered sequences of networks, defined over a fixed set of nodes; for example, time-stamped information about "who phoned who" or "who came into contact with who" arise naturally in studies of communication and the spread of disease. Concepts and algorithms for static networks do not immediately carry through to this dynamic setting. For example, suppose A and B interact in the morning, and then B and C interact in the afternoon. Information, or disease, may then pass from A to C, but not vice versa. This subtlety is lost if we simply summarize using the daily aggregate network given by the chain A-B-C. However, using a natural definition of a walk on an evolving network, we show that classic centrality measures from the static setting can be extended in a computationally convenient manner. In particular, communicability indices can be computed to summarize the ability of each node to broadcast and receive information. The computations involve basic operations in linear algebra, and the asymmetry caused by time's arrow is captured naturally through the noncommutativity of matrix-matrix multiplication. Illustrative examples are given for both synthetic and real-world communication data sets. We also discuss the use of the new centrality measures for real-time monitoring and prediction.