scispace - formally typeset
Search or ask a question

Showing papers on "Cooperativity published in 2005"


Journal ArticleDOI
TL;DR: The 3D structure of the fibrils comprising Aβ(1–42), which was obtained by using hydrogen-bonding constraints from quenched hydrogen/deuterium-exchange NMR, side-chain packing constraints from pairwise mutagenesis studies, and parallel, in-register β-sheet arrangement from previous solid-state NMR studies, explains the sequence selectivity, the cooperativity, and the apparent unidirectionality of Aβ fibril growth.
Abstract: Alzheimer's disease is the most fatal neurodegenerative disorder wherein the process of amyloid-beta (Abeta) amyloidogenesis appears causative. Here, we present the 3D structure of the fibrils comprising Abeta(1-42), which was obtained by using hydrogen-bonding constraints from quenched hydrogen/deuterium-exchange NMR, side-chain packing constraints from pairwise mutagenesis studies, and parallel, in-register beta-sheet arrangement from previous solid-state NMR studies. Although residues 1-17 are disordered, residues 18-42 form a beta-strand-turn-beta-strand motif that contains two intermolecular, parallel, in-register beta-sheets that are formed by residues 18-26 (beta1) and 31-42 (beta2). At least two molecules of Abeta(1-42) are required to achieve the repeating structure of a protofilament. Intermolecular side-chain contacts are formed between the odd-numbered residues of strand beta1 of the nth molecule and the even-numbered residues of strand beta2 of the (n - 1)th molecule. This interaction pattern leads to partially unpaired beta-strands at the fibrillar ends, which explains the sequence selectivity, the cooperativity, and the apparent unidirectionality of Abeta fibril growth. It also provides a structural basis for fibrillization inhibitors.

1,854 citations


Journal ArticleDOI
TL;DR: The data presented clearly demonstrate, for the first time, that the cannabinoid CB1 receptor contains an allosteric binding site that can be recognized by synthetic small molecule ligands.
Abstract: We investigated the pharmacology of three novel compounds, Org 27569 (5-chloro-3-ethyl-1H-indole-2-carboxylic acid [2-(4-piperidin-1-yl-phenyl)-ethyl]-amide), Org 27759 (3-ethyl-5-fluoro-1H-indole-2-carboxylic acid [2-94-dimethylamino-phenyl)-ethyl]-amide), and Org 29647 (5-chloro-3-ethyl-1H-indole-2-carboxylic acid (1-benzyl-pyrrolidin-3-yl)-amide, 2-enedioic acid salt), at the cannabinoid CB1 receptor. In equilibrium binding assays, the Org compounds significantly increased the binding of the CB1 receptor agonist [3H]CP 55,940 [(1R,3R,4R)-3-[2-hydroxy-4-(1,1-dimethylheptyl)phenyl]-4-(3-hydroxypropyl)cyclohexan-1-ol], indicative of a positively cooperative allosteric effect. The same compounds caused a significant, but incomplete, decrease in the specific binding of the CB1 receptor inverse agonist [3H]SR 141716A [N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboximide hydrochloride], indicative of a limited negative binding cooperativity. Analysis of the data according to an allosteric ternary complex model revealed that the estimated affinity of each Org compound was not significantly different when the radioligand was [3H]CP 55,940 or [3H]SR 141716A. However, the estimated cooperatively factor for the interaction between modulator and radioligand was greater than 1 when determined against [3H]CP 55,940 and less than 1 when determined against [3H]SR 141716A. [3H]CP 55,940 dissociation kinetic studies also validated the allosteric nature of the Org compounds, because they all significantly decreased radioligand dissociation. These data suggest that the Org compounds bind allosterically to the CB1 receptor and elicit a conformational change that increases agonist affinity for the orthosteric binding site. In contrast to the binding assays, however, the Org compounds behaved as insurmountable antagonists of receptor function; in the reporter gene assay, the guanosine 5′-O-(3-[35S]thio)triphosphate binding assay and the mouse vas deferens assay they elicited a significant reduction in the Emax value for CB1 receptor agonists. The data presented clearly demonstrate, for the first time, that the cannabinoid CB1 receptor contains an allosteric binding site that can be recognized by synthetic small molecule ligands.

411 citations


Journal ArticleDOI
TL;DR: The model describes both the unpairing and unstacking parts of the spectroscopically determined experimental melting curves and explains the observed temperature dependence of the effective thermodynamic parameters used in models of the nearest neighbor type.
Abstract: We propose a statistical mechanics model for the melting transition of DNA. Base pairing and stacking are treated as separate degrees of freedom, and the interplay between pairing and stacking is described by a set of local rules which mimic the geometrical constraints in the real molecule. This microscopic mechanism intrinsically accounts for the cooperativity related to the free energy penalty of bubble nucleation. The model describes both the unpairing and unstacking parts of the spectroscopically determined experimental melting curves. Furthermore, the model explains the observed temperature dependence of the effective thermodynamic parameters used in models of the nearest neighbor type. We compute the partition function for the model through the transfer matrix formalism, which we also generalize to include nonlocal chain entropy terms.

411 citations



Journal ArticleDOI
TL;DR: The single-crystal X-ray structure of the complex between the heteroditopic receptor and sodium iodide is reported and, thanks to the cooperativity of metal coordination and the strong I-...I halogen bonding, the ion pair is fully separated.
Abstract: A new heteroditopic receptor for alkali metal halides has been designed and synthesized. It is comprised of a well-established motif for cation binding and a motif for halogen-bonding-based anion recognition processes. The single-crystal X-ray structure of the complex between the heteroditopic receptor and sodium iodide is reported. Thanks to the cooperativity of metal coordination and the strong I-···I halogen bonding, the ion pair is fully separated. The boosting effect of the binding of the anion through halogen bonding on the coordination of the cation by the receptor has been proved also in solution by NMR experiments. The selectivity of the new heterotopic receptor toward different alkali metal halides has been tested by ESI mass experiments.

229 citations


Journal ArticleDOI
TL;DR: It is suggested that CCR5 and CCR2b form homo- and heterodimers with similar efficiencies and that a receptor dimer can only bind a single chemokine.
Abstract: It is well established that most G protein-coupled receptors are able to form homo- and heterodimers, although the functional consequences of this process often remain unclear. CCR5 is a chemokine receptor that plays an important role in inflammatory diseases and acts as a major coreceptor for human immunodeficiency viruses. CCR5 was previously shown to homodimerize and heterodimerize with CCR2b, a closely related receptor. In the present study, we have analyzed the functional consequences of this dimerization process, in terms of ligand binding, stimulation of intracellular cascades, and internalization. Bioluminescence resonance energy transfer and coimmunoprecipitation assays demonstrated that CCR5 and CCR2b heterodimerize with the same efficiency as they homodimerize. In contrast to what has been reported previously, no cooperative signaling was observed after costimulation of the two receptors by their respective ligands. However, we observed that CCR5-specific ligands that are unable to compete for monocyte chemoattractant protein (MCP-1) binding on cells expressing CCR2b alone efficiently prevented MCP-1 binding when CCR5 and CCR2b were coexpressed. The extent of this cross-competition was correlated with the amount of CCR5 expressed in cells, as determined by fluorescence-activated cell sorting analysis. Similar observations were made for the CCR2b-selective ligand MCP-1 that competed efficiently for macrophage inflammatory protein-1beta binding on cells expressing both receptors. Internalization assays did not allow us to demonstrate cointernalization of the receptors in response to agonist stimulation. Together, our observations suggest that CCR5 and CCR2b form homo- and heterodimers with similar efficiencies and that a receptor dimer can only bind a single chemokine.

193 citations


Journal ArticleDOI
TL;DR: This work examines a simple kinetic source of cooperativity stemming from the nonlinear degradation of multimeric proteins and demonstrates that a few-fold difference between the degradation rate of monomers and dimers can enhance the function of these circuits substantially.
Abstract: The functions of most genetic circuits require a sufficient degree of cooperativity in the circuit components. Although mechanisms of cooperativity have been studied most extensively in the context of transcriptional initiation control, cooperativity from other processes involved in the operation of the circuits can also play important roles. In this work, we examine a simple kinetic source of cooperativity stemming from the nonlinear degradation of multimeric proteins. Ample experimental evidence suggests that protein subunits can degrade less rapidly when associated in multimeric complexes, an effect we refer to as "cooperative stability." For dimeric transcription factors, this effect leads to a concentration-dependence in the degradation rate because monomers, which are predominant at low concentrations, will be more rapidly degraded. Thus, cooperative stability can effectively widen the accessible range of protein levels in vivo. Through theoretical analysis of two exemplary genetic circuits in bacteria, we show that such an increased range is important for the robust operation of genetic circuits as well as their evolvability. Our calculations demonstrate that a few-fold difference between the degradation rate of monomers and dimers can already enhance the function of these circuits substantially. We discuss molecular mechanisms of cooperative stability and their occurrence in natural or engineered systems. Our results suggest that cooperative stability needs to be considered explicitly and characterized quantitatively in any systematic experimental or theoretical study of gene circuits.

187 citations


Journal ArticleDOI
TL;DR: This work describes the solution structure of the ternary complex formed by cooperative binding of activation domains from the c-Myb and mixed lineage leukemia (MLL) transcription factors to the KIX domain, and results in the formation of additional electrostatic/polar interactions between KIX and the bound c- myb.

171 citations


Journal ArticleDOI
TL;DR: This model can explain the cooperativity between all binding partners of eif4A (eIF4G, RNA, ATP) and stimulation of eIF4A activity in the eIF3F complex and suggest that eIF 4G-m forms a soft clamp to stabilize the closed interdomain orientation of e IF4A.
Abstract: The eukaryotic translation initiation factors 4A (eIF4A) and 4G (eIF4G) are crucial for the assembly of the translationally active ribosome. Together with eIF4E, they form the eIF4F complex, which recruits the 40S subunit to the 5 cap of mRNA. The two-domain RNA helicase eIF4A is a very weak helicase by itself, but the activity is enhanced upon interaction with the scaffolding protein eIF4G. Here we show that, albeit both eIF4A domains play a role in binding the middle domain of eIF4G (eIF4G-m, amino acids 745–1003), the main interaction surface is located on the C-terminal domain. We use NMR spectroscopy to define the binding site and find that the contact surface is adjacent to the RNA-, ATP-, and eIF4A-NTD-interacting regions. Mutations of interface residues abrogated binding, confirmed the interface, and showed that the N-terminal end of eIF4G-m interacts with the C-terminal domain of eIF4A. The data suggest that eIF4G-m forms a soft clamp to stabilize the closed interdomain orientation of eIF4A. This model can explain the cooperativity between all binding partners of eIF4A (eIF4G, RNA, ATP) and stimulation of eIF4A activity in the eIF4F complex.

170 citations


Journal ArticleDOI
TL;DR: The conformation of phenyl-substituted monosaccharides and their singly hydrated complexes is investigated in the gas phase by means of a combination of mass selected, conformer specific ultraviolet and infrared double resonance hole burning spectroscopy experiments, and ab initio quantum chemistry calculations.
Abstract: The conformation of phenyl-substituted monosaccharides (mannose, galactose, and glucose) and their singly hydrated complexes has been investigated in the gas phase by means of a combination of mass selected, conformer specific ultraviolet and infrared double resonance hole burning spectroscopy experiments, and ab initio quantum chemistry calculations. In each case, the water molecule inserts into the carbohydrate at a position where it can replace a weak intramolecular interaction by two stronger intermolecular hydrogen bonds. The insertion can produce significant changes in the conformational preferences of the carbohydrates, and there is a clear preference for structures where cooperative effects enhance the stability of the monosaccharide conformers to which the water molecule chooses to bind. The conclusions drawn from the study of monosaccharide−water complexes are extended to the disaccharide lactose and discussed in the light of the underlying mechanisms that may be involved in the binding of carbo...

159 citations


Journal ArticleDOI
TL;DR: These studies illustrate how an ensemble-based description of proteins can be used to describe quantitatively the interdependence of local conformational fluctuations, ligand-binding processes, and global structural transitions.
Abstract: Local conformational fluctuations in proteins can affect the coupling between ligand binding and global structural transitions. This finding was established by monitoring quantitatively how the population distribution in the ensemble of microstates of staphylococcal nuclease was affected by proton binding. Analysis of acid unfolding and proton-binding data with an ensemble-based model suggests that local fluctuations: (i) can be effective modulators of ligand-binding affinities, (ii) are important determinants of the cooperativity of ligand-driven global structural transitions, and (iii) are well represented thermodynamically as local unfolding processes. These studies illustrate how an ensemble-based description of proteins can be used to describe quantitatively the interdependence of local conformational fluctuations, ligand-binding processes, and global structural transitions. This level of understanding of the relationship between conformation, energy, and dynamics is required for a detailed mechanistic understanding of allostery, cooperativity, and other complex functional and regulatory properties of macromolecules.

Journal ArticleDOI
TL;DR: Comparison of simple and multisite mechanistic models and interaction prediction accuracy for each of the in vitro probes indicated that midazolam and quinidine in vitro data provided the best assessment of a potential interaction, with the lowest bias and the highest precision of the prediction.
Abstract: The complexity of in vitro kinetic phenomena observed for CYP3A4 substrates (homo- or heterotropic cooperativity) confounds the prediction of drug-drug interactions, and an evaluation of alternative and/or pragmatic approaches and substrates is needed. The current study focused on the utility of the three most commonly used CYP3A4 in vitro probes for the prediction of 26 reported in vivo interactions with azole inhibitors (increase in area under the curve ranged from 1.2 to 24, 50% in the range of potent inhibition). In addition to midazolam, testosterone, and nifedipine, quinidine was explored as a more "pragmatic" substrate due to its kinetic properties and specificity toward CYP3A4 in comparison with CYP3A5. Ki estimates obtained in human liver microsomes under standardized in vitro conditions for each of the four probes were used to determine the validity of substrate substitution in CYP3A4 drug-drug interaction prediction. Detailed inhibitor-related (microsomal binding, depletion over incubation time) and substrate-related factors (cooperativity, contribution of other metabolic pathways, or renal excretion) were incorporated in the assessment of the interaction potential. All four CYP3A4 probes predicted 69 to 81% of the interactions with azoles within 2-fold of the mean in vivo value. Comparison of simple and multisite mechanistic models and interaction prediction accuracy for each of the in vitro probes indicated that midazolam and quinidine in vitro data provided the best assessment of a potential interaction, with the lowest bias and the highest precision of the prediction. Further investigations with a wider range of inhibitors are required to substantiate these findings.

Journal ArticleDOI
TL;DR: A mutant of Escherichia coli FtsZ, L68W, is produced, which gives a 250% increase in tryptophan fluorescence upon polymerization, which provides a real-time assay of polymer that is directly proportional to the concentration of subunit interfaces.

Journal ArticleDOI
TL;DR: The long-range effects of cofilin on the torsional dynamics of actin may accelerate P(i) release from filaments and modulate interactions with other regulatory actin filament binding proteins.

Journal ArticleDOI
TL;DR: The morpheein concept provides a new framework for understanding allosteric regulation, kinetic cooperativity and hysteresis of protein function through a dynamic equilibrium of protein structures wherein a protein monomer can exist in more than one conformation and each monomer conformation dictates a different quaternary structure of finite multiplicity and different functionality.

Journal ArticleDOI
TL;DR: GOMER (generalizable occupancy model of expression regulation) calculates binding probabilities on the basis of position weight matrices, and incorporates the effects of cooperativity and competition by explicit calculation of coupled binding equilibria.
Abstract: We have developed a computational model that predicts the probability of transcription factor binding to any site in the genome. GOMER (generalizable occupancy model of expression regulation) calculates binding probabilities on the basis of position weight matrices, and incorporates the effects of cooperativity and competition by explicit calculation of coupled binding equilibria. GOMER can be used to test hypotheses regarding gene regulation that build upon this physically principled prediction of protein-DNA binding.

Journal ArticleDOI
TL;DR: The results suggest that biological events such as protein-carbohydrate recognition and cryoprotection by carbohydrates may be driven by intramolecular hydrogen bond cooperativity.
Abstract: Molecular dynamics (MD) simulations combined with water-water H-bond angle analysis and calculation of solvent accessible surface area and approximate free energy of solvation were used to determine the influence of hydroxyl orientation on solute hydration and surrounding water structure for a group of chemically identical solutes-the aldohexopyranose sugars. Intramolecular hydrogen bond cooperativity was closely associated with changes in water structure surrounding the aldohexopyranose stereoisomers. The OH-4 group played a pivotal role in hydration as it was able to participate in a number of hydrogen bond networks utilizing the OH-6 group. Networks that terminated within the molecule (OH-4 --> OH-6 --> O-5) had relatively more nonpolar-like hydration than those that ended in a free hydroxyl group (OH-6 --> OH-4 --> OH-3). The OH-2 group modulated the strength of OH-4 networks through syndiaxial OH-2/4 intramolecular hydrogen bonding, which stabilized and induced directionality in the network. Other syndiaxial interactions, such as the one between OH-1 and OH-3, only indirectly affected water structure. Water structure surrounding hydrogen bond networks is discussed in terms of water-water hydrogen bond populations. The impact of syndiaxial versus vicinal hydrogen bonds is also reviewed. The results suggest that biological events such as protein-carbohydrate recognition and cryoprotection by carbohydrates may be driven by intramolecular hydrogen bond cooperativity.

Journal ArticleDOI
TL;DR: It is shown that cooperativity may intervene at the very first step of a cascade of events by formation of Franck-Condon states delocalized over several bases and subsequent energy transfer faster than 100 fs.
Abstract: Absorption of UV radiation by DNA bases is known to induce carcinogenic mutations. The lesion distribution depends on the sequence around the hotspots, suggesting cooperativity between bases. Here we show that such cooperativity may intervene at the very first step of a cascade of events by formation of Franck−Condon states delocalized over several bases and subsequent energy transfer faster than 100 fs. Our study focuses on the double helix poly(dA)·poly(dT), whose fluorescence, induced by femtosecond pulses at 267 nm, is probed by the upconversion technique and time-correlated single photon counting, over a large time domain (100 fs to 100 ns). The time-resolved fluorescence decays and fluorescence anisotropy decays are discussed in relation with the steady-state absorption and fluorescence spectra in the frame of exciton theory.

Journal ArticleDOI
TL;DR: Inspired by the cooperativity displayed by metalloenzymes, bifunctional organometallic complexes featuring pendant basic functional groups are designed and evaluated as catalysts in reactions for which enzymes are not suited.
Abstract: Inspired by the cooperativity displayed by metalloenzymes, bifunctional organometallic complexes featuring pendant basic functional groups are designed and evaluated as catalysts in reactions for which enzymes are not suited. Anti-Markovnikov hydration of terminal alkynes is the focus, as are hydrogen bonding and proton transfer facilitated by the pendant groups.

Journal ArticleDOI
TL;DR: The first example of peptide-functionalized gold nanoparticles hydrolytically active against carboxylate esters is reported, and this results in a more than 300-fold rate acceleration of the hydrolytic process at low pH in the presence of the functional nanoparticles.
Abstract: We report here the first example of peptide-functionalized gold nanoparticles hydrolytically active against carboxylate esters. The active units are constituted by His-Phe-OH terminating thiols. The confinement of the catalytic units in the monolayer covering the nanoparticles triggers a cooperative hydrolytic mechanism operative at pH < 7 in which a carboxylate and an imidazolium ion act as general base and general acid, respectively. Such a mechanism is absent with an analogous monomeric dipeptide, and this results in a more than 300-fold rate acceleration of the hydrolytic process at low pH in the presence of the functional nanoparticles.

Journal ArticleDOI
TL;DR: The impact of the chemokine dimerization process in terms of co-receptor function and drug development is discussed.

Journal ArticleDOI
TL;DR: Quantitative analysis of gene expression in vivo indicated that bcd cooperativity mutants were unable to accurately direct the extent to which hb is expressed along the anterior-posterior axis and displayed a reduced ability to generate sharp on/off transitions for hb gene expression.
Abstract: Cooperative interactions by DNA-binding proteins have been implicated in cell-fate decisions in a variety of organisms. To date, however, there are few examples in which the importance of such interactions has been explicitly tested in vivo. Here, we tested the importance of cooperative DNA binding by the Bicoid protein in establishing a pattern along the anterior–posterior axis of the early Drosophila embryo. We found that bicoid mutants specifically defective in cooperative DNA binding fail to direct proper development of the head and thorax, leading to embryonic lethality. The mutants did not faithfully stimulate transcription of downstream target genes such as hunchback (hb), giant, and Kruppel. Quantitative analysis of gene expression in vivo indicated that bcd cooperativity mutants were unable to accurately direct the extent to which hb is expressed along the anterior–posterior axis and displayed a reduced ability to generate sharp on/off transitions for hb gene expression. These failures in precise transcriptional control demonstrate the importance of cooperative DNA binding for embryonic patterning in vivo.

Journal ArticleDOI
TL;DR: Spectroscopic titration profiles in toluene at 20 degrees C demonstrated that the association constants (Kassoc) of C60 with monodiamine complexes 1 supersetbpy and1 supersetTMHDA are 8.5 and 4.5 times greater than that of C 60 with guest-free 1 (3.3 x 104 M-1), respectively.
Abstract: Upon binding with C60 and diamines, such as 4,4‘-bipyridine (bpy) and N,N,N‘,N‘-tetramethylhexane-1,6-diamine (TMHDA), cyclic host 1 possessing two electronically coupled binding sites displays negative homotropic cooperativity and positive heterotropic cooperativity, and their ternary mixtures preferentially form inclusion complexes with hetero-guest pairs 1⊃C60•bpy and 1⊃C60•TMHDA under appropriate conditions. Spectroscopic titration profiles in toluene at 20 °C demonstrated that the association constants (Kassoc) of C60 with monodiamine complexes 1⊃bpy (2.8 × 105 M-1) and 1⊃TMHDA (1.5 × 105 M-1) are 8.5 and 4.5 times greater than that of C60 with guest-free 1 (3.3 × 104 M-1), respectively. On the other hand, mono-C60 complex 1⊃C60 was 6.1 times more accessible than guest-free 1 toward TMHDA. Absorption spectroscopy in the absence of 1 indicated no direct interaction between C60 and diamines.

Journal ArticleDOI
TL;DR: Simulation studies of three model proteins indicate that for multi-domain proteins, ribosome-mediated folding may follow different pathways from those taken during refolding, and provide a first step toward developing more realistic methods for simulating protein folding as it occurs in vivo.
Abstract: Although molecular simulation methods have yielded valuable insights into mechanistic aspects of protein refolding in vitro, they have up to now not been used to model the folding of proteins as they are actually synthesized by the ribosome. To address this issue, we report here simulation studies of three model proteins: chymotrypsin inhibitor 2 (CI2), barnase, and Semliki forest virus protein (SFVP), and directly compare their folding during ribosome-mediated synthesis with their refolding from random, denatured conformations. To calibrate the methodology, simulations are first compared with in vitro data on the folding stabilities of N-terminal fragments of CI2 and barnase; the simulations reproduce the fact that both the stability and thermal folding cooperativity increase as fragments increase in length. Coupled simulations of synthesis and folding for the same two proteins are then described, showing that both fold essentially post-translationally, with mechanisms effectively identical to those for refolding. In both cases, confinement of the nascent polypeptide chain within the ribosome tunnel does not appear to promote significant formation of native structure during synthesis; there are however clear indications that the formation of structure within the nascent chain is sensitive to location within the ribosome tunnel, being subject to both gain and loss as the chain lengthens. Interestingly, simulations in which CI2 is artificially stabilized show a pronounced tendency to become trapped within the tunnel in partially folded conformations: non-cooperative folding, therefore, appears in the simulations to exert a detrimental effect on the rate at which fully folded conformations are formed. Finally, simulations of the two-domain protease module of SFVP, which experimentally folds cotranslationally, indicate that for multi-domain proteins, ribosome-mediated folding may follow different pathways from those taken during refolding. Taken together, these studies provide a first step toward developing more realistic methods for simulating protein folding as it occurs in vivo.

Journal ArticleDOI
TL;DR: The first molecular structures of human CYP3A4 were recently determined, revealing an active site of sufficient size and topography to accommodate either large ligands or multiple smaller ligands, as suggested by the heterotropic and homotropic cooperativity of the enzyme.

Journal ArticleDOI
TL;DR: It is proved here that in living cells, the glucocorticoid receptor and HMGB1 interact only within chromatin and not in the nucleoplasm and decrease each other's mobility, and it is proposed that kinetic cooperativity among transcription factors in chromatin binding may be a common feature in transcription and DNA transactions.

Journal ArticleDOI
TL;DR: A new description of protein binding sites is proposed: a site consists of (one or a few) self-contained cooperative regions, which emphasizes the compactness and cooperativity emphasize the similarity between binding and folding.
Abstract: Understanding and ultimately predicting protein associations is immensely important for functional genomics and drug design. Here, we propose that binding sites have preferred organizations. First, the hot spots cluster within densely packed 'hot regions'. Within these regions, they form networks of interactions. Thus, hot spots located within a hot region contribute cooperatively to the stability of the complex. However, the contributions of separate, independent hot regions are additive. Moreover, hot spots are often already pre-organized in the unbound (free) protein states. Describing a binding site through independent local hot regions has implications for binding site definition, design and parametrization for prediction. The compactness and cooperativity emphasize the similarity between binding and folding. This proposition is grounded in computation and experiment. It explains why summation of the interactions may over-estimate the stability of the complex. Furthermore, statistically, charge-charge coupling of the hot spots is disfavored. However, since within the highly packed regions the solvent is screened, the electrostatic contributions are strengthened. Thus, we propose a new description of protein binding sites: a site consists of (one or a few) self-contained cooperative regions. Since the residue hot spots are those conserved by evolution, proteins binding multiple partners at the same sites are expected to use all or some combination of these regions.

Journal ArticleDOI
TL;DR: Results indicate that the reduction in global cooperativity, and the associated ability to populate transiently a specific, partly unfolded intermediate state under physiologically relevant conditions, is a common feature underlying the behaviour of these two pathogenic mutations.

Journal ArticleDOI
Yiming Ye1, Hsiau-Wei Lee1, Wei Yang1, Sarah J. Shealy1, Jenny J. Yang1 
TL;DR: A charge-ligand-balanced model in which both the number of negatively charged ligand residues and the balanced electrostatic dentate-dentate repulsion by the adjacent charged residues are two major determinants for the relative Ca2+ -binding affinities of EF-loops in CaM is supported.
Abstract: Ca2+ binding is essential for the biological functions of calmodulin (CaM) as a trigger/sensor protein to regulate many biological processes in the Ca2+ -signaling cascade. A challenge in understanding the mechanism of Ca2+ signaling is to obtain site-specific information about the Ca2+ binding properties of individual Ca2+ -binding sites of EF-hand proteins, especially for CaM. In this paper, we report the first estimation of the intrinsic Ca2+ affinities of the four EF-hand loops of calmoduin (I-IV) by individually grafting into the domain 1 of CD2. Taking advantage of the Trp residues in the host protein, we first determined metal-binding affinities for Tb3+, Ca2+, and La3+ for all four grafted EF-loops using Tb3+ aromatic resonance energy transfer. EF-loop I exhibits the strongest binding affinity for Ca2+, La3+, and Tb3+, while EF-loop IV has the weakest metal-binding affinity. EF-loops I-IV of CaM have dissociation constants for Ca2+ of 34, 245, 185, and 814 microM, respectively, with the order I > III approximately equal to II > IV. These findings support a charge-ligand-balanced model in which both the number of negatively charged ligand residues and the balanced electrostatic dentate-dentate repulsion by the adjacent charged residues are two major determinants for the relative Ca2+ -binding affinities of EF-loops in CaM. Our grafting method provides a new strategy to obtain site-specific Ca2+ binding properties and a better estimation of the cooperativity and conformational change contributions of coupled EF-hand proteins.

Journal ArticleDOI
TL;DR: A method to tether one fibril formation inhibitor to TTR by disulfide bond formation is reported, enabling lower doses of inhibitor to be employed in the clinic, mitigating potential side effects.
Abstract: Protein native state stabilization imposed by small molecule binding is an attractive strategy to prevent the misfolding and misassembly processes associated with amyloid diseases. Transthyretin (TTR) amyloidogenesis requires rate-limiting tetramer dissociation before misassembly of a partially denatured monomer ensues. Selective stabilization of the native TTR tetramer over the dissociative transition state by small molecule binding to both thyroxine binding sites raises the kinetic barrier of tetramer dissociation, preventing amyloidogenesis. Assessing the amyloidogenicity of a TTR tetramer having only one amyloidogenesis inhibitor (I) bound is challenging because the two small molecule binding constants are generally not distinct enough to allow for the exclusive formation of TTR.I in solution to the exclusion of TTR.I(2) and unliganded TTR. Herein, we report a method to tether one fibril formation inhibitor to TTR by disulfide bond formation. Occupancy of only one of the two thyroxine binding sites is sufficient to inhibit tetramer dissociation in 6.0 M urea and amyloidogenesis under acidic conditions by imposing kinetic stabilization on the entire tetramer. The sufficiency of single occupancy for stabilizing the native state of TTR provides the incentive to search for compounds displaying striking negative binding cooperativity (e.g., K(d1) in nanomolar range and K(d2) in the micromolar to millimolar range), enabling lower doses of inhibitor to be employed in the clinic, mitigating potential side effects.