scispace - formally typeset
Search or ask a question

Showing papers on "Electric power system published in 2017"


Journal ArticleDOI
TL;DR: This paper reviews distributed algorithms for offline solution of optimal power flow (OPF) problems as well as online algorithms for real-time solution of OPF, optimal frequency control, optimal voltage control, and optimal wide-area control problems.
Abstract: Historically, centrally computed algorithms have been the primary means of power system optimization and control. With increasing penetrations of distributed energy resources requiring optimization and control of power systems with many controllable devices, distributed algorithms have been the subject of significant research interest. This paper surveys the literature of distributed algorithms with applications to optimization and control of power systems. In particular, this paper reviews distributed algorithms for offline solution of optimal power flow (OPF) problems as well as online algorithms for real-time solution of OPF, optimal frequency control, optimal voltage control, and optimal wide-area control problems.

800 citations


Journal ArticleDOI
TL;DR: A comprehensive review of state-of-the-art in FDIAs against modern power systems is given and some potential future research directions in this field are discussed.
Abstract: With rapid advances in sensor, computer, and communication networks, modern power systems have become complicated cyber-physical systems. Assessing and enhancing cyber-physical system security is, therefore, of utmost importance for the future electricity grid. In a successful false data injection attack (FDIA), an attacker compromises measurements from grid sensors in such a way that undetected errors are introduced into estimates of state variables such as bus voltage angles and magnitudes. In evading detection by commonly employed residue-based bad data detection tests, FDIAs are capable of severely threatening power system security. Since the first published research on FDIAs in 2009, research into FDIA-based cyber-attacks has been extensive. This paper gives a comprehensive review of state-of-the-art in FDIAs against modern power systems. This paper first summarizes the theoretical basis of FDIAs, and then discusses both the physical and the economic impacts of a successful FDIA. This paper presents the basic defense strategies against FDIAs and discusses some potential future research directions in this field.

692 citations


Journal ArticleDOI
TL;DR: This paper reviews several inertia and frequency control techniques proposed for variable speed wind turbines and solar PV generators and includes inertia emulation, fast power reserve, and droop techniques, which are used to release the RESs reserve power at under frequency events.
Abstract: Preservation of the environment has become the main motivation to integrate more renewable energy sources (RESs) in electrical networks. However, several technical issues are prevalent at high level RES penetration. The most important technical issue is the difficulty in achieving the frequency stability of these new systems, as they contain less generation units that provide reserve power. Moreover, new power systems have small inertia constant due to the decoupling of the RESs from the AC grid using power converters. Therefore, the RESs in normal operation cannot participate with other conventional generation sources in frequency regulation. This paper reviews several inertia and frequency control techniques proposed for variable speed wind turbines and solar PV generators. Generally, the inertia and frequency regulation techniques were divided into two main groups. The first group includes the deloading technique, which allow the RESs to keep a certain amount of reserve power, while the second group includes inertia emulation, fast power reserve, and droop techniques, which is used to release the RESs reserve power at under frequency events.

575 citations


Journal ArticleDOI
TL;DR: In this paper, the authors present a methodology and set of validation criteria for the systematic creation of synthetic power system test cases, which do not correspond to any real grid and are free from confidentiality requirements.
Abstract: This paper presents a methodology and set of validation criteria for the systematic creation of synthetic power system test cases The synthesized grids do not correspond to any real grid and are, thus, free from confidentiality requirements The cases are built to match statistical characteristics found in actual power grids First, substations are geographically placed on a selected territory, synthesized from public information about the underlying population and generation plants A clustering technique is employed, which ensures the synthetic substations meet realistic proportions of load and generation, among other constraints Next, a network of transmission lines is added This paper describes several structural statistics to be used in characterizing real power system networks, including connectivity, Delaunay triangulation overlap, dc power flow analysis, and line intersection rate The paper presents a methodology to generate synthetic line topologies with realistic parameters that satisfy these criteria Then, the test cases can be augmented with additional complexities to build large, realistic cases The methodology is illustrated in building a 2000 bus public test case that meets the criteria specified

531 citations


Journal ArticleDOI
Huaizhi Wang1, Gangqiang Li1, Guibin Wang1, Jianchun Peng1, Hui Jiang1, Yitao Liu1 
TL;DR: The proposed ensemble approach has been extensively assessed using real wind farm data from China, and the results demonstrate that the uncertainties in wind power data can be better learned using the proposed approach and that a competitive performance is obtained.

530 citations


Journal ArticleDOI
06 Apr 2017
TL;DR: The concept, metrics, and a quantitative framework for power system resilience evaluation are presented, with an emphasis on the new technologies such as topology reconfiguration, microgrids, and distribution automation and how to increase system resilience against extreme events.
Abstract: The electricity infrastructure is a critical lifeline system and of utmost importance to our daily lives. Power system resilience characterizes the ability to resist, adapt to, and timely recover from disruptions. The resilient power system is intended to cope with low probability, high risk extreme events including extreme natural disasters and man-made attacks. With an increasing awareness of such threats, the resilience of power systems has become a top priority for many countries. Facing the pressing urgency for resilience studies, the objective of this paper is to investigate the resilience of power systems. It summarizes practices taken by governments, utilities, and researchers to increase power system resilience. Based on a thorough review on the existing metrics system and evaluation methodologies, we present the concept, metrics, and a quantitative framework for power system resilience evaluation. Then, system hardening strategies and smart grid technologies as means to increase system resilience are discussed, with an emphasis on the new technologies such as topology reconfiguration, microgrids, and distribution automation; to illustrate how to increase system resilience against extreme events, we propose a load restoration framework based on smart distribution technology. The proposed method is applied on two test systems to validify its effectiveness. In the end, challenges to the power system resilience are discussed, including extreme event modeling, practical barriers, interdependence with other critical infrastructures, etc.

437 citations


Journal ArticleDOI
TL;DR: In this article, the authors present a literature review of the current state-of-the-art of virtual inertia implementation techniques and explore potential research directions and challenges, and discuss several research needs, especially for systems level integration of VINs.
Abstract: The modern power system is progressing from a synchronous machine-based system towards an inverter-dominated system, with large-scale penetration of renewable energy sources (RESs) like wind and photovoltaics. RES units today represent a major share of the generation, and the traditional approach of integrating them as grid following units can lead to frequency instability. Many researchers have pointed towards using inverters with virtual inertia control algorithms so that they appear as synchronous generators to the grid, maintaining and enhancing system stability. This paper presents a literature review of the current state-of-the-art of virtual inertia implementation techniques, and explores potential research directions and challenges. The major virtual inertia topologies are compared and classified. Through literature review and simulations of some selected topologies it has been shown that similar inertial response can be achieved by relating the parameters of these topologies through time constants and inertia constants, although the exact frequency dynamics may vary slightly. The suitability of a topology depends on system control architecture and desired level of detail in replication of the dynamics of synchronous generators. A discussion on the challenges and research directions points out several research needs, especially for systems level integration of virtual inertia systems.

416 citations


Journal ArticleDOI
TL;DR: A novel sequential Monte-Carlo-based time-series simulation model is introduced to assess power system resilience and the concept of fragility curves is used for applying weather- and time-dependent failure probabilities to system's components.
Abstract: Electrical power systems have been traditionally designed to be reliable during normal conditions and abnormal but foreseeable contingencies. However, withstanding unexpected and less frequent severe situations still remains a significant challenge. As a critical infrastructure and in the face of climate change, power systems are more and more expected to be resilient to high-impact low-probability events determined by extreme weather phenomena. However, resilience is an emerging concept, and, as such, it has not yet been adequately explored in spite of its growing interest. On these bases, this paper provides a conceptual framework for gaining insights into the resilience of power systems, with focus on the impact of severe weather events. As quantifying the effect of weather requires a stochastic approach for capturing its random nature and impact on the different system components, a novel sequential Monte-Carlo-based time-series simulation model is introduced to assess power system resilience. The concept of fragility curves is used for applying weather- and time-dependent failure probabilities to system's components. The resilience of the critical power infrastructure is modeled and assessed within a context of system-of-systems that also include human response as a key dimension. This is illustrated using the IEEE 6-bus test system.

415 citations


Journal ArticleDOI
TL;DR: This survey comprehensively overviews three major aspects: constructing FDI attacks; impacts of FDI attacked systems' impacts on electricity market; and defending against F DI attacks.
Abstract: The accurately estimated state is of great importance for maintaining a stable running condition of power systems. To maintain the accuracy of the estimated state, bad data detection (BDD) is utilized by power systems to get rid of erroneous measurements due to meter failures or outside attacks. However, false data injection (FDI) attacks, as recently revealed, can circumvent BDD and insert any bias into the value of the estimated state. Continuous works on constructing and/or protecting power systems from such attacks have been done in recent years. This survey comprehensively overviews three major aspects: constructing FDI attacks; impacts of FDI attacks on electricity market; and defending against FDI attacks. Specifically, we first explore the problem of constructing FDI attacks, and further show their associated impacts on electricity market operations, from the adversary's point of view. Then, from the perspective of the system operator, we present countermeasures against FDI attacks. We also outline the future research directions and potential challenges based on the above overview, in the context of FDI attacks, impacts, and defense.

411 citations


Journal ArticleDOI
TL;DR: In this article, a complete and up-to-date overview of demand response (DR) enabling technologies, programs and consumer response types is presented, as well as the benefits and the drivers that have motivated the adoption of DR programs and the barriers that may hinder their further development.
Abstract: The increasing penetration of renewable energy sources (RES) in power systems intensifies the need of enhancing the flexibility in grid operations in order to accommodate the uncertain power output of the leading RES such as wind and solar generation. Utilities have been recently showing increasing interest in developing Demand Response (DR) programs in order to match generation and demand in a more efficient way. Incentive- and price-based DR programs aim at enabling the demand side in order to achieve a range of operational and economic advantages, towards developing a more sustainable power system structure. The contribution of the presented study is twofold. First, a complete and up-to-date overview of DR enabling technologies, programs and consumer response types is presented. Furthermore, the benefits and the drivers that have motivated the adoption of DR programs, as well as the barriers that may hinder their further development, are thoroughly discussed. Second, the international DR status quo is identified by extensively reviewing existing programs in different regions.

405 citations


Journal ArticleDOI
11 May 2017
TL;DR: The power-conversion and control technologies used for DPGSs are reviewed, the impacts of the DPGs on the distributed grid are examined, and more importantly, strategies for enhancing the connection and protection of the BES are discussed.
Abstract: Continuously expanding deployments of distributed power-generation systems (DPGSs) are transforming the conventional centralized power grid into a mixed distributed electrical network. The modern power grid requires flexible energy utilization but presents challenges in the case of a high penetration degree of renewable energy, among which wind and solar photovoltaics are typical sources. The integration level of the DPGS into the grid plays a critical role in developing sustainable and resilient power systems, especially with highly intermittent renewable energy resources. To address the challenging issues and, more importantly, to leverage the energy generation, stringent demands from both utility operators and consumers have been imposed on the DPGS. Furthermore, as the core of energy conversion, numerous power electronic converters employing advanced control techniques have been developed for the DPGS to consolidate the integration. In light of the above, this paper reviews the power-conversion and control technologies used for DPGSs. The impacts of the DPGS on the distributed grid are also examined, and more importantly, strategies for enhancing the connection and protection of the DPGS are discussed.

Journal ArticleDOI
TL;DR: In this paper, the scheduling problem of DERs is studied from various aspects such as modeling techniques, solving methods, reliability, emission, uncertainty, stability, demand response (DR), and multi-objective standpoint in the microgrid and VPP frameworks.
Abstract: Due to different viewpoints, procedures, limitations, and objectives, the scheduling problem of distributed energy resources (DERs) is a very important issue in power systems. This problem can be solved by considering different frameworks. Microgrids and Virtual Power Plants (VPPs) are two famous and suitable concepts by which this problem is solved within their frameworks. Each of these two solutions has its own special significance and may be employed for different purposes. Therefore, it is necessary to assess and review papers and literature in this field. In this paper, the scheduling problem of DERs is studied from various aspects such as modeling techniques, solving methods, reliability, emission, uncertainty, stability, demand response (DR), and multi-objective standpoint in the microgrid and VPP frameworks. This review enables researchers with different points of view to look for possible applications in the area of microgrid and VPP scheduling.

Journal ArticleDOI
TL;DR: It is shown how normal operations of power networks can be statistically distinguished from the case under stealthy attacks, and two machine-learning-based techniques for stealthy attack detection are proposed.
Abstract: Aging power industries, together with the increase in demand from industrial and residential customers, are the main incentive for policy makers to define a road map to the next-generation power system called the smart grid. In the smart grid, the overall monitoring costs will be decreased, but at the same time, the risk of cyber attacks might be increased. Recently, a new type of attacks (called the stealth attack) has been introduced, which cannot be detected by the traditional bad data detection using state estimation. In this paper, we show how normal operations of power networks can be statistically distinguished from the case under stealthy attacks. We propose two machine-learning-based techniques for stealthy attack detection. The first method utilizes supervised learning over labeled data and trains a distributed support vector machine (SVM). The design of the distributed SVM is based on the alternating direction method of multipliers, which offers provable optimality and convergence rate. The second method requires no training data and detects the deviation in measurements. In both methods, principal component analysis is used to reduce the dimensionality of the data to be processed, which leads to lower computation complexities. The results of the proposed detection methods on IEEE standard test systems demonstrate the effectiveness of both schemes.

Journal ArticleDOI
TL;DR: Protection schemes for renewable integrated power networks which includes distribution, transmission and microgrid systems are presented, which are experiencing dynamic fault currents and frequent changing network topologies.
Abstract: Among different sources of alternate energy, wind and solar are two prominent and promising alternatives to meet the future electricity needs for mankind. Generally, these sources are integrated at the distribution utilities to supply the local distribution customers. If the power generated by these sources is bulk, then they are either integrated at the distribution/transmission level or may be operated in an island mode if feasible. The integration of these renewables in the power network will change the fault level and network topologies. These fault levels are intermittent in nature and existing protection schemes may fail to operate because of their pre-set condition. Therefore, the design and selection of a proper protection scheme is very much essential for reliable control and operation of renewable integrated power systems. Depending upon the level of infeed and location of the renewable integration, the protection requirements are different. For low renewable infeed at the distribution level, the existing relay settings are immune from any small change in the network fault current from new incoming renewables. However, bulk renewable infeed requires modification in the existing protection schemes to accommodate the fault current variation from the incoming renewables. For bulk penetration of the renewable, the requirement of modified/additional protection schemes is unavoidable. Adaptive relaying and non-adaptive relaying schemes are discussed in the literature for protection of power networks, which are experiencing dynamic fault currents and frequent changing network topologies. This article presents a detailed review of protection schemes for renewable integrated power networks which includes distribution, transmission and microgrid systems. The merits and demerits of these protection schemes are also identified in this article for the added interest of the readers. The visible scope of advance protection schemes which may be suitable for providing reliable protection for dynamic fault current networks is also explored.

Journal ArticleDOI
TL;DR: In this paper, a new metric levelized cost of delivery (LCOD) is proposed to calculate the LCOE for the EES, which can be used to assist policymakers to consider the discount rate, the type of storage technology and sizing of components in a PV-EES hybrid system.

Journal ArticleDOI
TL;DR: In this paper, the authors present a detailed technical overview of microgrid and smart grid in light of present development and future trend, including existing technical challenges, communication features, policies and regulation, etc.
Abstract: The modern electric power systems are going through a revolutionary change because of increasing demand of electric power worldwide, developing political pressure and public awareness of reducing carbon emission, incorporating large scale renewable power penetration, and blending information and communication technologies with power system operation. These issues initiated in establishing microgrid concept which has gone through major development and changes in last decade, and recently got a boost in its growth after being blessed by smart grid technologies. The objective of this paper is to presents a detailed technical overview of microgrid and smart grid in light of present development and future trend. First, it discusses microgrid architecture and functions. Then, smart features are added to the microgrid to demonstrate the recent architecture of smart grid. Finally, existing technical challenges, communication features, policies and regulation, etc. are discussed from where the future smart grid architecture can be visualized.

Journal ArticleDOI
TL;DR: In this paper, a novel Moth Swarm Algorithm (MSA) inspired by the orientation of moths towards moonlight was proposed to solve constrained optimal power flow (OPF) problem.

Journal ArticleDOI
TL;DR: In this paper, the authors classified ship propulsion topologies into combustion, electrochemical, stored and hybrid power supply, and analyzed which control strategies can improve performance of hybrid systems for future smart and autonomous ships and concluded that a combination of torque, angle of attack, and Model Predictive Control with dynamic settings could improve performance.

Journal ArticleDOI
TL;DR: In this article, the authors give the insights about fuel cell operation and application of various power electronics systems and discuss the control algorithms of power architecture for the couple of well-known applications.
Abstract: Renewable energy generation is rapidly growing in the power sector industry and widely used for two categories: grid connected and standalone system. This paper gives the insights about fuel cell operation and application of various power electronics systems. The fuel cell voltage decreases bit by bit with expansion in current because of losses associated with fuel cell. It is difficult in handling large rated fuel cell based power system without regulating mechanism. The issue connected with fuel based structural planning and the arrangements are widely investigated for all sorts of utilization. In order to improve the reliability of fuel cell based power system, the integration of energy storage system and advanced research methods are focused in this paper. The control algorithms of power architecture for the couple of well-known applications are discussed. Additionally, the paper addresses the suitable processor utilized as a part of the energy unit application on the premise of fuel cell characteristics. In this paper, the challenges to improve the dynamics of controller in fuel cell based applications are mentioned.

Journal ArticleDOI
TL;DR: In this article, a critical review of flywheel energy storage systems (FESS) in regards to its main components and applications is presented, and different types of electric machines, power electronics converter topologies and bearing systems for use in flywheel storage systems are discussed.
Abstract: Energy storage systems (ESS) provide a means for improving the efficiency of electrical systems when there are imbalances between supply and demand. Additionally, they are a key element for improving the stability and quality of electrical networks. They add flexibility into the electrical system by mitigating the supply intermittency, recently made worse by an increased penetration of renewable generation. One energy storage technology now arousing great interest is the flywheel energy storage systems (FESS), since this technology can offer many advantages as an energy storage solution over the alternatives. Flywheels have attributes of a high cycle life, long operational life, high round-trip efficiency, high power density, low environmental impact, and can store megajoule (MJ) levels of energy with no upper limit when configured in banks. This paper presents a critical review of FESS in regards to its main components and applications, an approach not captured in earlier reviews. Additionally, earlier reviews do not include the most recent literature in this fast-moving field. A description of the flywheel structure and its main components is provided, and different types of electric machines, power electronics converter topologies, and bearing systems for use in flywheel storage systems are discussed. The main applications of FESS are explained and commercially available flywheel prototypes for each application are described. The paper concludes with recommendations for future research.

Journal ArticleDOI
TL;DR: In this paper, a robust co-optimization scheduling model was proposed to study the coordinated optimal operation of the two energy systems, while considering power system key uncertainties and natural gas system dynamics.
Abstract: The significant growth of gas-fired power plants and emerging power-to-gas (PtG) technology has intensified the interdependency between electricity and natural gas systems. This paper proposes a robust co-optimization scheduling model to study the coordinated optimal operation of the two energy systems. The proposed model minimizes the total costs of the two systems, while considering power system key uncertainties and natural gas system dynamics. Because of the limitation on exchanging private data and the challenge in managing complex models, the proposed co-optimization model is tackled via alternating direction method of multipliers (ADMM) by iteratively solving a power system subproblem and a gas system subproblem. The power system subproblem is solved by column-and-constraint generation (C&CG) and outer approximation (OA), and the nonlinear gas system subproblem is solved by converting into a mixed-integer linear programming model. To overcome nonconvexity of the original problem with binary variables, a tailored ADMM with a relax-round-polish process is developed to obtain high-quality solutions. Numerical case studies illustrate the effectiveness of the proposed model for optimally coordinating electricity and natural gas systems with uncertainties.

Reference BookDOI
19 Oct 2017
TL;DR: In this paper, international test procedures for photovoltaic modules have been described and compared under natural conditions using the Asian Institute of Technology test bed system, and a dynamic simulation approach has been used to predict the performance of stand-alone PV power systems using cumulative frequency curves of irradiance.
Abstract: TECHNOLOGICAL PROCESSES Solar cell technologies PHOTOVOLTAIC GENERATOR The photovoltaic generator Network of solar cells, modules, and arrays PHOTOVOLTAIC SYSTEMS ENGINEERING Storage batteries for photovoltaic power systems Electronic regulation Power conditioning Adaptation of a positive-displacement pump directly connected to a photovoltaic generator Centrifugal photovoltaic pumping CHARACTERIZATION AND TESTING METHODS International test procedures for photovoltaic modules Asian Institute of Technology photovoltaic module test bed system Testing of photovoltaic modules under natural conditions using the Asian Institute of Technology photovoltaic module test bed system Characterization procedure of photovoltaic refrigeration system Field trial procedure for a photovoltaic pumping system under natural conditions Battery-testing method for low-water-loss and starting, lighting, and ignition (automotive) batteries SIZING PROCEDURE The sizing of stand-alone photovoltaic power systems A dynamic simulation approach Prediction of photovoltaic system performance using cumulative frequency curves of irradiance ECONOMIC ANALYSIS Financial evaluation of renewable energy projects Comparative assessment of photovoltaics and handpumps for rural water supply Life-cycle cost comparison of alternative power supply for a portable pocket-sized stereo cassette tape recorder INSTRUMENTATION A simple metal-oxide-semiconductor field-effect transistor electronic variable load Equipment accommodation Terminology REFERENCES INDEX

Journal ArticleDOI
09 May 2017
TL;DR: This paper provides an introduction to the fundamental concepts of power systems resilience and to the use of hardening and smart operational strategies to improve it, and introduces the resilience trapezoid as visual tool to reflect the behavior of a power system during a catastrophic event.
Abstract: Power systems have typically been designed to be reliable to expected, low-impact high-frequency outages. In contrast, extreme events, driven for instance by extreme weather and natural disasters, happen with low-probability, but can have a high impact. The need for power systems, possibly the most critical infrastructures in the world, to become resilient to such events is becoming compelling. However, there is still little clarity as to this relatively new concept. On these premises, this paper provides an introduction to the fundamental concepts of power systems resilience and to the use of hardening and smart operational strategies to improve it. More specifically, first the resilience trapezoid is introduced as visual tool to reflect the behavior of a power system during a catastrophic event. Building on this, the key resilience features that a power system should boast are then defined, along with a discussion on different possible hardening and smart, operational resilience enhancement strategies. Further, the so-called $\Phi \Lambda {E}\Pi $ resilience assessment framework is presented, which includes a set of resilience metrics capable of modeling and quantifying the resilience performance of a power system subject to catastrophic events. A case study application with a 29-bus test version of the Great Britain transmission network is carried out to investigate the impacts of extreme windstorms. The effects of different hardening and smart resilience enhancement strategies are also explored, thus demonstrating the practicality of the different concepts presented.

Journal ArticleDOI
TL;DR: In this paper, a resilient event-triggering load frequency control (LFC) for multi-area power systems with energy-limited Denial-of-Service (DoS) attacks is investigated.
Abstract: This paper investigates a resilient event-triggering $H_{\infty }$ load frequency control (LFC) for multi-area power systems with energy-limited Denial-of-Service (DoS) attacks. The LFC design specifically takes the presence of DoS attacks into account. First, an area control error dependent time delay model is delicately constructed for multi-area closed-loop power systems. Second, a resilient event-triggering communication (RETC) scheme is well designed, which allows a degree of packet losses induced by DoS attacks and has the advantage of improving the transaction efficiency. Then, by using the Lyapunov theory, two stability and stabilization criteria for the multi-area power systems are derived under consideration of the energy-limited DoS attacks. In these criteria, the relationship between the allowable DoS attack duration and the resilient event-triggering communication parameters are clearly revealed. Moreover, an algorithm is also provided to obtain the RETC parameters and the LFC gains simultaneously. Finally, a case study shows the effectiveness of the proposed method.

Journal ArticleDOI
Wenyu Zhang1, Zongxi Qu1, Kequan Zhang1, Wenqian Mao1, Yining Ma1, Xu Fan1 
TL;DR: In this paper, a combined model combining complete ensemble empirical mode decomposition adaptive noise (CEEMDAN), flower pollination algorithm with chaotic local search (CLSFPA), five neural networks and no negative constraint theory (NNCT) is proposed for short-term wind speed forecasting.

Journal ArticleDOI
TL;DR: In this article, a two-stage approach for allocation of EV parking lots and distributed renewable resources (DRRs) in power distribution network is proposed, which considers both the economical benefits of parking lot investor and the technical constraints of distribution network operator.

Journal ArticleDOI
TL;DR: The Flywheel Energy Storage System (FESS) as mentioned in this paper is an electromechanical energy storage system which can exchange electrical power with the electric network, it consists of an electrical machine, back-to-back converter, DC link capacitor and a massive disk.
Abstract: Flywheel Energy Storage System (FESS) is an electromechanical energy storage system which can exchange electrical power with the electric network. It consists of an electrical machine, back-to-back converter, DC link capacitor and a massive disk. Unlike other storage systems such as the Battery Energy Storage System (BESS), FESS is an environmentally-friendly short- or medium-term energy storage system, which has the capability of numerous charge and discharge cycles. These characteristics make the FESS a suitable choice for different applications in the power system such as power quality improvement, power smoothing, renewable energies integration support, stability improvement, etc. This paper presents an overview on the structures and applications of FESS in power system and Microgrid (MG) and also challenges, problems and future works discussed. It can be a driver for development of FESS applications and also recommends suggestions to use its advantages in other areas. Investigation of different studies shows that FESS, as a developing technology, can play an effective role in the operation of the present and future power system and MG.

Journal ArticleDOI
TL;DR: This paper investigates the problem of defending against false data injection attacks on power system state estimation by designing the least-budget defense strategy to protect power systems against FDI attacks, and forms the meter selection problem as a mixed integer nonlinear programming problem, which can be efficiently tackled by Benders’ decomposition.
Abstract: This paper investigates the problem of defending against false data injection (FDI) attacks on power system state estimation. Although many research works have been previously reported on addressing the same problem, most of them made a very strong assumption that some meter measurements can be absolutely protected. To address the problem practically, a reasonable approach is to assume whether or not a meter measurement could be compromised by an adversary does depend on the defense budget deployed by the defender on the meter. From this perspective, our contributions focus on designing the least-budget defense strategy to protect power systems against FDI attacks. In addition, we also extend to investigate choosing which meters to be protected and determining how much defense budget to be deployed on each of these meters. We further formulate the meter selection problem as a mixed integer nonlinear programming problem, which can be efficiently tackled by Benders’ decomposition. Finally, extensive simulations are conducted on IEEE test power systems to demonstrate the advantages of the proposed approach in terms of computing time and solution quality, especially for large-scale power systems.

Journal ArticleDOI
TL;DR: In this paper, a comprehensive review on the optimal allocation of distributed generators was carried out for different objectives, constraints, and algorithms, highlighting how the methods and algorithms for optimal distributed generation allocation play an important role in improving the accuracy and efficiency of the results.
Abstract: Distributed generation, with respect to its ability in utilizing the alternative resources of energy, provides a promising future for power generation in electric networks. Distributed generators contribution to power systems include improvement in energy efficiency and power quality to reliability and security. These benefits are only achievable with optimal allocation of distributed resources that considers the objective function, constraints, and employs suitable optimization algorithm. In this paper, a comprehensive review on the optimal allocation of distributed generators was carried out for different objectives, constraints, and algorithms. Current review highlights how the methods and algorithms for optimal distributed generation allocation play an important role in improving the accuracy and efficiency of the results.

Journal ArticleDOI
15 Mar 2017-Energy
TL;DR: In this article, the authors stress the need for grid and backup capacity by investigating an integrated market in Europe, allowing for additional short-term as well as long-term storage and considering concentrated solar power (CSP) as a dispatchable backup option.