scispace - formally typeset
Search or ask a question

Showing papers on "Extracellular matrix component published in 2018"


Journal ArticleDOI
TL;DR: The key effects of HA reviewed here are its role in activating CAFs in pre-malignant and malignant stroma, and facilitating invasion by promoting motility of both CAFs and tumor cells, thus facilitating their invasion.
Abstract: This review summarizes the roles of CAFs in forming a "cancerized" fibrotic stroma favorable to tumor initiation and dissemination, in particular highlighting the functions of the extracellular matrix component hyaluronan (HA) in these processes. The structural complexity of the tumor and its host microenvironment is now well appreciated to be an important contributing factor to malignant progression and resistance-to-therapy. There are multiple components of this complexity, which include an extensive remodeling of the extracellular matrix (ECM) and associated biomechanical changes in tumor stroma. Tumor stroma is often fibrotic and rich in fibrillar type I collagen and hyaluronan (HA). Cancer-associated fibroblasts (CAFs) are a major source of this fibrotic ECM. CAFs organize collagen fibrils and these biomechanical alterations provide highways for invading carcinoma cells either under the guidance of CAFs or following their epithelial to mesenchymal transition (EMT). The increased HA metabolism of a tumor microenvironment instructs carcinoma initiation and dissemination by performing multiple functions. The key effects of HA reviewed here are its role in activating CAFs in pre-malignant and malignant stroma, and facilitating invasion by promoting motility of both CAFs and tumor cells, thus facilitating their invasion. Circulating CAFs (cCAFs) also form heterotypic clusters with circulating tumor cells (CTC), which are considered to be pre-cursors of metastatic colonies. cCAFs are likely required for extravasation of tumors cells and to form a metastatic niche suitable for new tumor colony growth. Therapeutic interventions designed to target both HA and CAFs in order to limit tumor spread and increase response to current therapies are discussed.

104 citations


Journal ArticleDOI
TL;DR: The synthesis, mechanical properties, and structure of native elastin as well as the theories on how this extracellular matrix component provides elasticity in vivo are explained.

89 citations


Journal ArticleDOI
TL;DR: Although collagen VI was so far known to be mostly involved in skeletal muscle homeostasis, this Review summarizes a number of recent studies that highlight its key role in the peripheral and central nervous systems, pointing at a link with human neurological disorders.
Abstract: Collagen VI is a major extracellular matrix protein exerting a number of functions in different tissues, spanning from biomechanical to regulatory signals in the cell survival processes, and playing key roles in maintaining the stemness or determining the differentiation of several types of cells. In the last couple of years, emerging findings on collagen VI have led to increased interest in its role in the nervous system. The role of this protein in the peripheral nervous system was intensely studied and characterized in detail. Collagen VI acts as a regulator of Schwann cell differentiation and is required for preserving peripheral nerve myelination, function and structure, as well as for orchestrating nerve regeneration after injury. Although the role and distribution of collagen VI in the peripheral nervous system is now well established, the role of this distinctive extracellular matrix component in the central nervous system, along with its links to human neurological and neurodegenerative disorders, remains an open field of investigation. In this Review, we summarize and discuss a number of recent findings related to collagen VI in the central and peripheral nervous systems. We further link these findings to different aspects of the protein that are relevant to human diseases in these compartments in order to provide a comprehensive overview of the roles of this key matrix component in the nervous system.

54 citations


Journal ArticleDOI
06 Jul 2018-PLOS ONE
TL;DR: PU-LN1 scaffolds show their superiority in driving CPC behavior, evidencing their promising role in myocardial regenerative medicine and biodegraded into non-cytotoxic residues.
Abstract: Scaffolds populated with human cardiac progenitor cells (CPCs) represent a therapeutic opportunity for heart regeneration after myocardial infarction. In this work, square-grid scaffolds are prepared by melt-extrusion additive manufacturing from a polyurethane (PU), further subjected to plasma treatment for acrylic acid surface grafting/polymerization and finally grafted with laminin-1 (PU-LN1) or gelatin (PU-G) by carbodiimide chemistry. LN1 is a cardiac niche extracellular matrix component and plays a key role in heart formation during embryogenesis, while G is a low-cost cell-adhesion protein, here used as a control functionalizing molecule. X-ray photoelectron spectroscopy analysis shows nitrogen percentage increase after functionalization. O1s and C1s core-level spectra and static contact angle measurements show changes associated with successful functionalization. ELISA assay confirms LN1 surface grafting. PU-G and PU-LN1 scaffolds both improve CPC adhesion, but LN1 functionalization is superior in promoting proliferation, protection from apoptosis and expression of differentiation markers for cardiomyocytes, endothelial and smooth muscle cells. PU-LN1 and PU scaffolds are biodegraded into non-cytotoxic residues. Scaffolds subcutaneously implanted in mice evoke weak inflammation and integrate with the host tissue, evidencing a significant blood vessel density around the scaffolds. PU-LN1 scaffolds show their superiority in driving CPC behavior, evidencing their promising role in myocardial regenerative medicine.

36 citations



Journal ArticleDOI
TL;DR: This dual enzyme-responsive drug delivery system based on extracellular matrix components (ECM) shelled mesoporous silica nanoparticles provided an efficient platform for cancer therapy and showed distinguishing controlled release efficiency toward cancer cells induced by different levels of HAase and MMP-2.
Abstract: Stimuli-responsive drug delivery systems with reduced side effects offer promising prospects for cancer therapy. In this study, we developed an enzyme-responsive nanomedicine system based on extracellular matrix components (ECM) shelled mesoporous silica nanoparticles. The covalently conjugated ECM biomacromolecules, hyaluronic acid and collagen I, can not only enhance the biocompatibility of the particles and avoid early drug leakage, but also allow selective biodegradation triggered by hyaluronidase (HAase) and Matrix metalloproteinases 2 (MMP-2), which are overexpressed enzymes in some tumor tissues. The in vitro cytotoxicity test confirmed favorable biocompatibility of the as-prepared nanomedicine system. Moreover, this system showed distinguishing controlled release efficiency toward cancer cells induced by different levels of HAase and MMP-2. The in vivo antitumor test demonstrated the excellent efficiency of our system for tumor targeting drug delivery and tumor growth inhibition. Therefore, this d...

30 citations


Journal ArticleDOI
TL;DR: Results suggest that cinnamaldehyde is a broad inhibitor of POSTN expression covering both TGF-β1 and IL-13 signaling, and may thus be beneficial for the treatment of systemic fibrotic diseases.
Abstract: Systemic fibrosing or sclerotic disorders are life-threatening, but only very limited treatment modalities are available for them. In recent years, periostin (POSTN), a major extracellular matrix component, was established by several studies as a novel key player in the progression of systemic fibrotic disease. In this research, we revealed the involvement of oxidative stress in the expression of POSTN induced by TGF-β1 and IL-13 in dermal fibroblasts. We found that the antioxidant cinnamaldehyde activated the NRF2/HMOX1 pathway. Cinnamaldehyde also alleviated TGF-β1- and IL-13-mediated production of reactive oxygen species and subsequent POSTN upregulation in dermal fibroblasts. In contrast, NRF2 silencing abolished the cinnamaldehyde-mediated downregulation of POSTN. These results suggest that cinnamaldehyde is a broad inhibitor of POSTN expression covering both TGF-β1 and IL-13 signaling. Cinnamaldehyde may thus be beneficial for the treatment of systemic fibrotic diseases.

22 citations


Journal ArticleDOI
TL;DR: It is described for the first time, to the knowledge, that the collagen VI von Willebrand factor type A–like domains exhibit a broad-spectrum antimicrobial activity against Gram-positive and Gram-negative bacteria in human skin infections in vivo.
Abstract: Collagen VI is a ubiquitous extracellular matrix component that forms extensive microfibrillar networks in most connective tissues. In this study, we describe for the first time, to our knowledge, that the collagen VI von Willebrand factor type A-like domains exhibit a broad-spectrum antimicrobial activity against Gram-positive and Gram-negative bacteria in human skin infections in vivo. In silico sequence and structural analysis of VWA domains revealed that they contain cationic and amphipathic peptide sequence motifs, which might explain the antimicrobial nature of collagen VI. In vitro and in vivo studies show that these peptides exhibited significant antibacterial activity against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa through membrane disruption. Our findings shed new light on the role of collagen VI-derived peptides in innate host defense and provide templates for development of peptide-based antibacterial therapies.

21 citations


Journal ArticleDOI
TL;DR: Codelivery of matrilin‐3 with Ad‐MSCs significantly influenced articular cartilage regeneration, supporting the potential use of this tissue‐specific protein for a cartilage‐targeted stem cell therapy.
Abstract: Matrilin-3 is an essential extracellular matrix component present only in cartilaginous tissues Matrilin-3 exerts chondroprotective effects by regulating an anti-inflammatory function and extracellular matrix components We hypothesized that the codelivery of matrilin-3 with infrapatellar adipose-tissue-derived mesenchymal stem cells (Ad-MSCs) may enhance articular cartilage regeneration Matrilin-3 treatment of Ad-MSCs in serum-free media induced collagen II and aggrecan expression, and matrilin-3 in chondrogenic media also enhanced in vitro chondrogenic differentiation Next, the in vivo effect of matrilin-3 codelivery with Ad-MSCs on cartilage regeneration was assessed in an osteochondral defect model in Sprague Dawley rats: Ad-MSCs and hyaluronic acid were implanted at the defect site with or without matrilin-3 (140, 280, and 700 ng) Safranin O staining revealed that matrilin-3 (140 and 280 ng) treatment significantly improved cartilage regeneration and glycosaminoglycan accumulation In the animals treated with 140-ng matrilin-3, in particular, the defect site exhibited complete integration with surrounding tissue and a smooth glistening surface The International Cartilage Repair Society macroscopic and O'Driscoll microscopic scores for regenerated cartilage were furthermore shown to be considerably higher for this group (matrilin-3; 140 ng) compared with the other groups Furthermore, the defects treated with 140-ng matrilin-3 revealed significant hyaline-like cartilage regeneration in the osteochondral defect model; in contrast, the defects treated with 700-ng matrilin-3 exhibited drastically reduced cartilage regeneration with mixed hyaline-fibrocartilage morphology Codelivery of matrilin-3 with Ad-MSCs significantly influenced articular cartilage regeneration, supporting the potential use of this tissue-specific protein for a cartilage-targeted stem cell therapy

19 citations


Journal ArticleDOI
TL;DR: It is demonstrated that an HA microenvironment enhances hADSC-mediated cartilage regeneration in chondral defects and thus may be used for ADSC-based articular cartilage tissue engineering.

19 citations


Journal ArticleDOI
TL;DR: The functional roles of the elastin matrix, and recent methods that utilize this key extracellular matrix component for tissue repair are summarized.

Journal ArticleDOI
16 Apr 2018
TL;DR: A surface-modification technique of converting the hydrophobic surface of a polymeric film into a hydrophilic one using a layer-by-layer assembly process involving gold nanoparticles and small molecules like amino acids is presented.
Abstract: Hydrophobic polymers, for their favorable mechanical properties, are a popular choice as permanent bioimplants. These materials remain absolutely bioinert for years, but throw up challenges when it comes to fast integration with healthy tissue. Addressing this, herein, we present a surface-modification technique of converting the hydrophobic surface of a polymeric film into a hydrophilic one using a layer-by-layer assembly process involving gold nanoparticles and small molecules like amino acids. These films showed much improved animal cell (murine fibroblast) adherence properties compared to commercially available tissue culture plates. Moreover, arginine-modified films exhibited a nearly equivalent cell viability compared to the films modified with the natural extracellular matrix component fibronectin. The surface hydrophilicity and roughness of our novel film were characterized by contact angle measurement and atomic force microscopy. Cell counting, fluorescence microscopy, cell viability, and collagen estimation assay were employed to demonstrate that our film favored a much improved cell adherence, and accommodation in comparison to the commercially available tissue culture plates.

Journal ArticleDOI
23 Apr 2018-PLOS ONE
TL;DR: The advantage of the hyaluronan-binding cells was observed in the hematopoietic stem and progenitor populations, and was maintained throughout the immune system.
Abstract: CD44 is a widely expressed cell adhesion molecule that binds to the extracellular matrix component, hyaluronan. However, this interaction is not constitutive in most immune cells at steady state, as the ability of CD44 to engage hyaluronan is highly regulated. While activated T cells and macrophages gain the ability to bind hyaluronan by CD44, the status in other immune cells is less studied. Here we found a percentage of murine eosinophils, natural killer and natural killer T cells were capable of interacting with hyaluronan at steady state. To further investigate the consequences of hyaluronan binding by CD44 in the hematopoietic system, point mutations of CD44 that either cannot bind hyaluronan (LOF-CD44) or have an increased affinity for hyaluronan (GOF-CD44) were expressed in CD44-deficient bone marrow. Competitive bone marrow reconstitution of irradiated mice revealed an early preference for GOF-CD44 over WT-CD44 expressing cells, and for WT-CD44 over LOF-CD44 expressing cells, in the hematopoietic progenitor cell compartment. The advantage of the hyaluronan-binding cells was observed in the hematopoietic stem and progenitor populations, and was maintained throughout the immune system. Hematopoietic stem cells bound minimal hyaluronan at steady state, and this was increased when the cells were induced to proliferate whereas multipotent progenitors had an increased ability to bind hyaluronan at steady state. In vitro, the addition of hyaluronan promoted their proliferation. Thus, proliferating hematopoietic progenitors bind hyaluronan, and hyaluronan binding cells have a striking competitive advantage in bone marrow engraftment.

Journal ArticleDOI
TL;DR: Results indicate that P27 is a novel Fn-binding, immunogenic adhesive protein of M. bovis, thereby contributing to the further understanding of the molecular pathogenesis of the bovine respiratory disease.

Journal ArticleDOI
TL;DR: The findings suggest that Has knockout mice have abnormal HA synthesis, which in turn leads to precocious and exacerbated MG morphogenesis culminating in dysmorphic eyelids and MGs.
Abstract: Purpose The Meibomian gland (MG) produces the lipid layer of the tear film, and changes to the MG that lead to a decrease or alteration in lipid quality/content may lead to MG dysfunction, a major cause of evaporative dry eye disease with prevalence ranging from 39% to 50%. Little is known about the developmental cues that regulate MG morphogenesis and homeostasis. Our study investigates the role of hyaluronan (HA), a major extracellular matrix component, in eyelid formation and MG development and function. Methods Hyaluronan synthase (Has) knockout mice were used to determine the role of HA in the eyelid and MG. Eyelids were obtained during different developmental stages and MG morphology was analyzed. Tet-off H2B-GFP/K5tTA mice and 5-ethynyl-2'-deoxyurdine (EdU) incorporation were used to determine the role of HA in maintaining slow-cycling and proliferating cells within the MG, respectively. Data were confirmed using an in vitro proliferation assay, differentiation assay and spheroid cultures. Results Has knockout mice present precocious MG development, and adult mice present MG hyperplasia and dysmorphic MGs and eyelids, with hyperplastic growths arising from the palpebral conjunctiva. Our data show that a highly organized HA network encompasses the MG, and basal cells are embedded within this HA matrix, which supports the proliferating cells. Spheroid cultures showed that HA promotes acini formation. Conclusions HA plays an important role in MG and eyelid development. Our findings suggest that Has knockout mice have abnormal HA synthesis, which in turn leads to precocious and exacerbated MG morphogenesis culminating in dysmorphic eyelids and MGs.

Journal ArticleDOI
TL;DR: The treatment of sustained release of basic fibroblast growth factor using gelatin hydrogel in a rat chronic MI model altered the collagen subtype of the fibrotic scar more suitable for tissue repair, indicating the alteration of solid scar tissue.
Abstract: Chronic myocardial infarction (CMI) tends to be resistant to treatments possibly due to extensive solid fibrotic scar, hypoxia mediated by poorly vascularized environment, and/or inflammation and apoptosis. Here we aimed to testify the therapeutic effects of sustained release of basic fibroblast growth factor (bFGF) using gelatin hydrogel (GH) in a rat chronic MI model and to elucidate the therapeutic mechanism including the alteration of extracellular matrix component. CMI model rats are prepared by the permanent ligation of proximal left anterior descending coronary artery. After 4 weeks, GH sheets (GHSs) with bFGF (100 µg) (bFGF group) or with phosphate-buffered saline (Vehicle group) were implanted to the CMI models to evaluate the effect of bFGF–GHS on chronic scar tissue. Sham operation group was also prepared (n = 5 for each). 4 weeks after implantation, bFGF–GHS significantly improved cardiac contractile function (fractional shortening: 21.8 ± 1.1 vs 21.5 ± 1.3 vs 29.7 ± 1.8%; P < 0.001/fractional area change: 33.0 ± 1.4 vs 34.1 ± 2.3 vs 40.6 ± 1.8%; P < 0.001) (Sham vs Vehicle vs bFGF) accompanied with neovascularization. Immunohistochemical studies revealed that bFGF–GHS increased collagen III/I ratio indicating the alteration of solid scar tissue. Quantitative RT-PCR results showed a decrease of collagen I mRNA expression within border MI zone. The implantation of bFGF–GHS altered the collagen subtype of the fibrotic scar more suitable for tissue repair. The treatment of sustained-release bFGF may be promising for ischemic heart disease through chronic pathology.

Journal ArticleDOI
TL;DR: The present finding suggests that the Leptospira LIC13341 antigen is a versatile outer membrane adhesin of diagnostic importance.
Abstract: The outer membrane proteins of the pathogen are targeted to understand host–pathogen interactions and are central to the development of diagnostics. We report that Leptospira interrogans serovar Copenhageni strain Fiocruz L1-130 contains a gene LIC13341 that encodes a conserved outer membrane/periplasmic lipoprotein. The gene LIC13341 was cloned into expression vector pET28a and the recombinant LIC13341 (r-LIC13341) protein was purified from Escherichia coli BL21 (DE3) using affinity chromatography. The secondary structure of the purified r-LIC13341 protein featured a typical β-strand when observed by circular dichroism spectroscopy. Immunoblotting using antibodies raised against r-LIC13341 in BALB/c mice can detect LIC13341 expression in the Leptospira lysates and suggested that antigen LIC13341 is immunogenic. Phase separation and protease assays determined that LIC13341 is a surface-exposed outer membrane protein of Leptospira. The r-LIC13341 can bind to a wide spectrum of host extracellular matrices (ECMs). The specific adherence of Leptospira to laminin and hyaluronic acid of the ECM was competitively inhibited in the presence of r-LIC13341. The enzyme-linked immunosorbent assay and immunoblot performed using human or bovine leptospirosis serum (n=50) recognized r-LIC13341, suggesting that LIC13341 is expressed in diverse hosts during Leptospira infection. Thus, the present finding suggests that the Leptospira LIC13341 antigen is a versatile outer membrane adhesin of diagnostic importance.

Journal ArticleDOI
TL;DR: The importance of ECM2 expression during bovine MDSC differentiation is demonstrated for the first time; these results could lead to treatments that help to increase beef cattle muscularity.

Patent
11 Oct 2018
TL;DR: Compositions for topical delivery of an active agent and methods for using such compositions are described in this article, which include one or more active agents and about 0.001 wt. % of a extracellular matrix component having average molecular weight of about 2,000 daltons to about 20,000 Daltons.
Abstract: Compositions for topical delivery of an active agent and methods for using such compositions are described herein. Compositions include one or more active agents and about 0.001 wt. % to about 10 wt. % of a extracellular matrix component having average molecular weight of about 2,000 daltons to about 20,000 daltons. The extracellular components include hyaluronic acid, collagen, fibronectin, elastin, lectin, and fragments thereof and combinations thereof.

Journal ArticleDOI
TL;DR: It is shown that sclerotic cells are able to secrete pepstatin A-sensible aspartic peptidase when grown under chemically defined conditions, and this may contribute to reveal new virulence markers and potential targets for chromoblastomycosis therapy.
Abstract: Fonsecaea pedrosoi is a dematiaceous fungus and the main causative agent of chromoblastomycosis that is a chronic disease usually affecting the human skin and subcutaneous tissues, which causes deformations and incapacities, being frequently refractory to available therapies. A typical globe-shaped, multiseptated and pigmented cells, known as sclerotic cells, are found in the lesions of infected individuals. In the present work, we have investigated the production of aspartic-type peptidase in F. pedrosoi sclerotic cells as well as the effect of peptidase inhibitors (PIs) on its enzymatic activity and viability. Our data showed that sclerotic cells are able to secrete pepstatin A-sensible aspartic peptidase when grown under chemically defined conditions. In addition, aspartic PIs (ritonavir, nelfinavir, indinavir, and saquinavir), which are clinically used in the HIV chemotherapy, significantly decreased the fungal peptidase activity, varying from 55 to 99%. Moreover, sclerotic cell-derived aspartic peptidase hydrolyzed human albumin, an important serum protein, as well as laminin, an extracellular matrix component, but not immunoglobulin G and fibronectin. It is well-known that aspartic peptidases play important physiological roles in fungal cells. With this task in mind, the effect of pepstatin A, a classical aspartic peptidase inhibitor, on the F. pedrosoi proliferation was evaluated. Pepstatin A inhibited the fungal viability in both cellular density- and drug-concentration manners. Moreover, HIV-PIs at 10 μM powerfully inhibited the viability (>65%) of F. pedrosoi sclerotic cells. The detection of aspartic peptidase produced by sclerotic cells, the parasitic form of F. pedrosoi, may contribute to reveal new virulence markers and potential targets for chromoblastomycosis therapy.

Journal ArticleDOI
TL;DR: CNI induced LOX over-activation in cavernous tissue, and inhibition of LOX preserved penile morphology and improved erectile function in a rat model of BCNI could be a promising strategy in preventing the progression of CNI-induced erectile dysfunction.

Journal ArticleDOI
TL;DR: Collagen, a major scleral extracellular matrix component, is degraded during myopia, and targeting cAMP signaling pathway genes could suppress myopia development.
Abstract: Purpose Myopia induction accompanies increased scleral cyclic adenosine phosphate (cAMP) levels and collagen degradation in mammalian models. We compared the scleral gene expression changes following monocular form deprivation (FD) with those induced by adenylate cyclase activation with forskolin (FSK) in guinea pigs. Methods Guinea pigs were assigned to FD, FSK-treated, and age-matched (AM) control groups. FSK was injected monocularly into the inferior palpebral subconjunctiva daily for 4 days. After scleral RNA extraction, a gene microarray scanner and software were used to evaluate the gene expression patterns, followed by pathway analysis using Gene Ontology tools. Quantitative PCR (qPCR) was used to analyze the expression of 10 candidate genes in separate sets of form-deprived, vehicle-injected, and AM animals. Results FSK injections differentially regulated 13 collagen subtypes compared to AM and FD groups. FSK also downregulated Acta2 and Tgf-β2 compared to the AM eyes. Collagen subtypes and Acta2 underwent larger downregulation in the FSK group than during FD. FSK differentially regulated Rarb, Rxrg, Fzd5, Ctnnd2, Dkk2, and Dkk3, which have been linked to ocular growth. Only a few genes were differentially expressed between the FD and AM groups. There was 80% agreement in the direction of gene regulation between microarray and qPCR results. No significant differences were identified between vehicle-injected and AM eyes. Conclusions Collagen, a major scleral extracellular matrix component, is degraded during myopia. Given that FSK and FD both promote myopia through increased collagen degradation, targeting cAMP signaling pathway genes could suppress myopia development.

Journal ArticleDOI
TL;DR: Assessment of the innate protective effects of collagen VI against NTHi infection in vivo shed new light on the carefully orchestrated molecular events of the host-pathogen interplay in COPD and emphasize the importance of the extracellular matrix as a novel branch of innate host defense.
Abstract: Non-typeable Haemophilus influenzae (NTHi) is a Gram-negative human commensal commonly residing in the nasopharynx of preschool children. It occasionally causes upper respiratory tract infection such as acute otitis media, but can also spread to the lower respiratory tract causing bronchitis and pneumonia. There is increasing recognition that NTHi has an important role in chronic lower respiratory tract inflammation, particularly in persistent infection in patients suffering from chronic obstructive pulmonary disease (COPD). Here, we set out to assess the innate protective effects of collagen VI, a ubiquitous extracellular matrix component, against NTHi infection in vivo. In vitro, collagen VI rapidly kills bacteria through pore formation and membrane rupture, followed by exudation of intracellular content. This effect is mediated by specific binding of the von Willebrand A (VWA) domains of collagen VI to the NTHi surface adhesins protein E (PE) and Haemophilus autotransporter protein (Hap). Similar observations were made in vivo specimens from murine airways and COPD patient biopsies. NTHi bacteria adhered to collagen fibrils in the airway mucosa and were rapidly killed by membrane destabilization. The significance in host-pathogen interplay of one of these molecules, PE, was highlighted by the observation that it confers partial protection from bacterial killing. Bacteria lacking PE were more prone to antimicrobial activity than NTHi expressing PE. Altogether the data shed new light on the carefully orchestrated molecular events of the host-pathogen interplay in COPD and emphasize the importance of the extracellular matrix as a novel branch of innate host defense.

Journal ArticleDOI
TL;DR: The findings suggest that the polymorphic genotypes at MMP-1 promoter -1607 may play a major role in determining personal cancer susceptibility for prostate cancer in Taiwan.
Abstract: BACKGROUND/AIM The family of matrix metalloproteinases (MMPs) is responsible for the maintenance of extracellular matrix component homeostasis and the association of MMP-1 genetic polymorphisms with personal susceptibility to prostate cancer has only been investigated in Turkish and Japan populations and never in Taiwan. In the current study, we aimed to examine the contribution of a polymorphism in the promoter region of MMP-1 to Taiwan prostate cancer. MATERIALS AND METHODS The MMP-1 rs1799705 polymorphic genotypes were genotyped among 218 prostate cancer patients and 436 healthy controls by the typical polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) methodology. RESULTS The percentages of 2G/2G, 1G/2G, and 1G/1G for MMP-1 -1607 genotypes were 36.2, 40.4 and 23.4% in the prostate cancer group and 33.7, 44.3, and 22.0% in the healthy control group (p trend=0.6362), respectively. The odds ratios (ORs) after adjusting for age and smoking status for those carrying 1G/2G and 1G/1G genotypes at MMP-1 -1607 were 0.84 (95%CI=0.55-1.21, p=0.3862) and 0.94 (95%CI=0.67-1.53, p=0.9586), respectively, compared to those carrying the wild-type 2G/2G genotype. Supporting these findings, the adjusted OR for those carrying the 1G allele at MMP-1 -1607 was 1.03 (95%CI=0.71-1.45, p=0.6910), compared to those carrying the wild-type 2G allele. CONCLUSION Our findings suggest that the polymorphic genotypes at MMP-1 promoter -1607 may play a major role in determining personal cancer susceptibility for prostate cancer in Taiwan.

Journal ArticleDOI
TL;DR: It is shown with a murine model that the increase in CD44 expression and hyaluronan binding induced upon CD8 T cell activation was proportional to the strength of TCR engagement, thereby identifying the most strongly activated T cells.
Abstract: Expansion and death of effector CD8 T cells are regulated to limit immunopathology and cells that escape contraction go on to generate immunological memory. CD44, a receptor for the extracellular matrix component hyaluronan, is a marker of activated and memory T cells. Here, we show with a murine model that the increase in CD44 expression and hyaluronan binding induced upon CD8 T cell activation was proportional to the strength of TCR engagement, thereby identifying the most strongly activated T cells. When CD44-/- and CD44+/+ OT-I CD8 T cells were adoptively transferred into mice challenged with Listeria-OVA, there was a slight increase in the percentage of CD44+/+ cells at the effector site. However, CD44+/+ cells were out-competed by CD44-/- cells after the contraction phase in the lymphoid tissues, and the CD44-/- cells preferentially formed more memory cells. The hyaluronan-binding CD44+/+ CD8 effector T cells showed increased pAkt expression, higher glucose uptake, and were more susceptible to cell death during the contraction phase compared to non-binding CD44+/+ and CD44-/- OT-I CD8 T cells, suggesting that CD44 and its engagement with hyaluronan skews CD8 T cells toward a terminal effector differentiation state that reduces their ability to form memory cells.

Patent
24 Jul 2018
TL;DR: In this article, the authors disclosed biological ink for 3D printing and a preparation method thereof, which can be used for simulating extracellular matrix component, structure and biological activity characteristics better by utilizing advantages ofextracellular vesicles and characteristics of the biological macromolecular material and hydrogel.
Abstract: The invention discloses biological ink for 3D (Three Dimensional) printing and a preparation method thereof. The biological ink for the 3D printing is prepared from the following raw materials in percentage by mass: 10 to 30 percent of an extracellular vesicle mixed suspension solution, 5 to 15 percent of a biological macromolecular material, 0.1 to 1 percent of dissolution promoter and the balance of water. The biological ink disclosed by the invention can be used for simulating extracellular matrix component, structure and biological activity characteristics better by utilizing advantages ofextracellular vesicles and characteristics of the biological macromolecular material and hydrogel.

Journal ArticleDOI
TL;DR: In this paper, the authors designed a bifunctional surface in which adhesive peptide ligands and short HA oligosaccharides tethered to nanoparticles are co-presented to the basal side of LECs in a controlled, concentration dependent manner.
Abstract: Controlled activation of lymphangiogenesis through functional biomaterials represents a promising approach to support wound healing after surgical procedures, yet remains a challenge. In a synthetic biological approach, we therefore set out to mimic the basal microenvironment of human primary dermal lymphatic endothelial cells (LECs) during lymphangiogenesis. As the extracellular matrix component hyaluronan (HA) regulates lymphangiogenesis, we designed a bifunctional surface in which adhesive peptide ligands and short HA oligosaccharides (sHA) tethered to nanoparticles are co-presented to the basal side of LECs in a controlled, concentration dependent manner. Exposure of LECs to sHA in solution to mimic luminal stimulation of the cells did not result in modified metabolic activity. However, LECs grown on the bifunctional adhesive surfaces showed a biphasic change in metabolic activity, with increased metabolic activity being observed in response to increasing nanoparticle densities up to a maximum of 540 particles/ µm2. Thus, interfaces that concomitantly present adhesive ligands and sHA can stimulate LEC metabolism and might be able to trigger lymphangiogenesis.

Patent
02 Feb 2018
TL;DR: In this paper, a method for decellularization of liver tissues, which comprises the following steps: a step for preparing liver tissues which are target for de-cellularisation; a cell removal step using a decellularityization solution in which a surfactant and a hypertonic solution are contained and mixed and destroying cells of the liver tissues.
Abstract: Provided is a method for decellularization of liver tissues, which comprises the following steps: a step for preparing liver tissues which are target for decellularization; a cell removal step using a decellularization solution in which a surfactant and a hypertonic solution are contained and mixed and destroying cells of the liver tissues to and transform the cells of the liver tissues into a decellularization material; and a sterilization and disinfection step for sterilizing and disinfecting the decellularization material after the cell removal step The method for decellularization of liver tissues, and bio-ink comprising the decellularization material and the decellularization liver cells use the hypertonic solution during a decellularization process and can perform rapid treatment, so that provided is a material for 3d printing in which a residual DNA amount removal rate is increased and the residual amount of an extracellular matrix component is increased

Journal ArticleDOI
17 Sep 2018
TL;DR: The muscular dystrophy-related reduction in the concentration of β-dystroglycan, which forms in conjunction with its extracellular binding partner α-dyStrogly can a critical plasmalemmal receptor for laminin-211, does not appear to alter its oligomeric status.
Abstract: Background : In Duchenne muscular dystrophy, primary abnormalities in the membrane cytoskeletal protein dystrophin trigger the loss of sarcolemmal linkage between the extracellular matrix component laminin-211 and the intracellular cortical actin membrane cytoskeleton. The disintegration of the dystrophin-associated glycoprotein complex renders the plasma membrane of contractile fibres more susceptible to micro-rupturing, which is associated with abnormal calcium handling and impaired cellular signalling in dystrophinopathy. Methods : The oligomerisation pattern of β-dystroglycan, an integral membrane protein belonging to the core dystrophin complex, was studied using immunoprecipitation and chemical crosslinking analysis. A homo-bifunctional and non-cleavable agent with water-soluble and amine-reactive properties was employed to study protein oligomerisation in normal versus dystrophin-deficient skeletal muscles. Crosslinker-induced protein oligomerisation was determined by a combination of gel-shift analysis and immunoblotting. Results : Although proteomics was successfully applied for the identification of dystroglycan as a key component of the dystrophin-associated glycoprotein complex in the muscle membrane fraction, mass spectrometric analysis did not efficiently recognize this relatively low-abundance protein after immunoprecipitation or chemical crosslinking. As an alternative approach, comparative immunoblotting was used to evaluate the effects of chemical crosslinking. Antibody decoration of the crosslinked microsomal protein fraction from wild type versus the mdx-4cv mouse model of dystrophinopathy revealed oligomers that contain β-dystroglycan. The protein exhibited a comparable reduction in gel electrophoretic mobility in both normal and dystrophic samples. The membrane repair proteins dysferlin and myoferlin, which are essential components of fibre regeneration, as well as the caveolae-associated protein cavin-1, were also shown to exist in high-molecular mass complexes. Conclusions : The muscular dystrophy-related reduction in the concentration of β-dystroglycan, which forms in conjunction with its extracellular binding partner α-dystroglycan a critical plasmalemmal receptor for laminin-211, does not appear to alter its oligomeric status. Thus, independent of direct interactions with dystrophin, this sarcolemmal glycoprotein appears to exist in a supramolecular assembly in muscle.

Journal ArticleDOI
TL;DR: This study suggests that additional silicone tube wrapping on the SCN of rat with diabetes closely mimics the course and pathologic findings of human DPN.
Abstract: Objective This article investigates the role of chronic nerve compression in the progression of diabetic peripheral neuropathy (DPN) by gene expression profiling. Methods Chronic nerve compression was created in streptozotocin (STZ)-induced diabetic rats by wrapping a silicone tube around the sciatic nerve (SCN). Neurological deficits were evaluated using pain threshold test, motor nerve conduction velocity (MNCV), and histopathologic examination. Differentially expressed genes (DGEs) and metabolic processes associated with chronic nerve compression were analyzed. Results Significant changes in withdrawal threshold and MNCV were observed in diabetic rats 6 weeks after diabetes induction, and in DPN rats 4 weeks after diabetes induction. Histopathologic examination of the SCN in DPN rats presented typical changes of myelin degeneration in DPN. Function analyses of DEGs demonstrated that biological processes related to inflammatory response, extracellular matrix component, and synaptic transmission were upregulated after diabetes induction, and chronic nerve compression further enhanced those changes. While processes related to lipid and glucose metabolism, response to insulin, and apoptosis regulation were inhibited after diabetes induction, chronic nerve compression further enhanced these inhibitions. Conclusion Our study suggests that additional silicone tube wrapping on the SCN of rat with diabetes closely mimics the course and pathologic findings of human DPN. Further studies are needed to verify the effectiveness of this rat model of DPN and elucidate the roles of the individual genes in the progression of DPN.