scispace - formally typeset
Search or ask a question

Showing papers on "Fatty acid-binding protein published in 2004"


Journal ArticleDOI
TL;DR: FAT/CD36 provides another potential therapeutic target for the prevention and/or treatment of insulin resistance and the increased rate of fatty acid transport may contribute to the increased rates of triacylglycerol accumulation in human skeletal muscle.
Abstract: We examined whether, in human obesity and type 2 diabetes, long chain fatty acid (LCFA) transport into skeletal muscle is upregulated and contributes to an excess intramuscular triacylglycerol accumulation. In giant sarcolemmal vesicles prepared from human skeletal muscle, LCFA transport rates were upregulated approximately 4-fold and were associated with an increased intramuscular triacylglycerol content in obese individuals and in type 2 diabetics. In these individuals, the increased sarcolemmal LCFA transport rate was not associated with an altered expression of FAT/CD36 or FABPpm. Instead, the increase in the LCFA transport rate was associated with an increase in sarcolemmal FAT/CD36 but not sarcolemmal FABPpm. Rates of fatty acid esterification were increased threefold in isolated human muscle strips obtained from obese subjects, while concomitantly rates of fatty acid oxidation were not altered. Thus, the increased rate of fatty acid transport may contribute to the increased rates of triacylglycerol accumulation in human skeletal muscle. The altered FAT/CD36 trafficking in muscle from obese subjects and type 2 diabetics juxtaposes the known alterations in GLUT4 trafficking, i.e., GLUT4 is known to be retained in its intracellular depots while FAT/CD36 is retained at the sarcolemma. This redistribution of FAT/CD36 to the sarcolemma may contribute to the etiology of insulin resistance in human muscle, and hence, FAT/CD36 provides another potential therapeutic target for the prevention and/or treatment of insulin resistance.

401 citations


Journal ArticleDOI
TL;DR: This review summarizes the properties of the various FABPs expressed in mammalian tissues, and discusses the transgenic and ablation studies carried out to date in a functional context.

397 citations


Journal ArticleDOI
TL;DR: This review will focus on how FABPs direct lipid traffic and simultaneously control inflammatory and metabolic pathways under the pressures of the Metabolic Syndrome.
Abstract: Fatty acid binding proteins (FABPs) are members of a highly conserved family of proteins with the task of protecting a cell’s delicate lipid balance. Yet they fail when faced with metabolic or inflammatory stress, turning the cytosol into an inhospitable environment with less than ideal outcomes. This review will focus on how FABPs direct lipid traffic and simultaneously control inflammatory and metabolic pathways under the pressures of the Metabolic Syndrome.

257 citations


Journal ArticleDOI
TL;DR: The experimental model suggests that urinary excretion of hL-FABP reflects stresses, such as urinary protein overload, on the proximal tubules, and the clinical observations support this hypothesis.
Abstract: Urinary excretion of human liver-type fatty acid-binding protein (hL-FABP), which is expressed in human proximal tubules and engaged in free fatty acid (FFA) metabolism, was reported to reflect the clinical prognosis of chronic kidney disease. Here we have investigated the pathophysiological significance of hL-FABP in a model of protein overload nephropathy. Because L-FABP is not expressed in the wild-type mice, we generated hL-FABP chromosomal gene transgenic (Tg) mice. Tg mice were intraperitoneally injected with bovine serum albumin (BSA) replete with FFAs (r-BSA group) or FFA-depleted BSA (d-BSA group). The r-BSA group developed significantly more severe tubulointerstitial damage than did the d-BSA group. Renal expression of the hL-FABP gene was more up-regulated, and urinary excretion of hL-FABP was significantly higher, in the r-BSA group than in the d-BSA group. Furthermore, compared with their wild-type littermates injected with r-BSA, the number of infiltrated macrophages was significantly attenuated in Tg mice injected with it on day 28. In patients with kidney disease (n = 50), urinary hL-FABP was correlated with both urinary protein and the severity of tubulointerstitial injury. In conclusion, our experimental model suggests that urinary excretion of hL-FABP reflects stresses, such as urinary protein overload, on the proximal tubules. The clinical observations support this hypothesis.

212 citations


Journal ArticleDOI
TL;DR: Results indicate that alterations in MVM LPL activity and expression of L-FABP may contribute to the altered lipid deposition and metabolism in IUGR and diabetic pregnancies.
Abstract: Triglyceride (TG) hydrolases in the placental microvillous plasma membrane (MVM) release fatty acids from circulating lipoproteins and represent the critical initial step in transplacental fatty acid transfer. We investigated the activity of two TG hydrolases in MVM isolated from placentas of appropriately grown for gestational age pregnancies and pregnancies complicated by intrauterine growth restriction (IUGR), insulin-dependent diabetes mellitus (IDDM) or gestational diabetes mellitus (GDM). In addition, we measured protein expression of lipoprotein lipase (LPL) in MVM and two fatty acid binding proteins (L- and C-FABP) in placental homogenates. The TG hydrolase activities were assessed by measuring hydrolysis of (3)H-trioleic acid incorporated into intralipid micelles after incubation with MVM. The placenta-specific TG hydrolase activity (optimum at pH 6) did not differ in the patient groups studied. MVM LPL activity (optimum at pH 8) was reduced by 47% in preterm IUGR (n = 8, P < 0.05), compared with gestational age-matched controls. The LPL activity in placentas of IDDM pregnancies was increased by 39% (n = 8, P < 0.05), compared with controls. No significant differences were observed in cases of GDM. We found no alteration in protein expression of LPL or C-FABP. The expression of L-FABP was increased by 112% (n = 8, P < 0.05) in IDDM and 64% (n = 8, P < 0.05) in GDM. These results indicate that alterations in MVM LPL activity and expression of L-FABP may contribute to the altered lipid deposition and metabolism in IUGR and diabetic pregnancies.

191 citations


Journal ArticleDOI
TL;DR: High-resolution crystallographic and NMR structures of several proteins with bound fatty acids reveal the complete tertiary structure of the protein and molecular details of fatty acid-protein interactions.

141 citations


Journal ArticleDOI
TL;DR: It is demonstrated that, in the NT state, women had higher muscle mRNA levels of several proteins related to muscle lipid metabolism compared with men, whereas in the ET state, only the gender difference in mLPL mRNA persisted.
Abstract: The protein and mRNA levels of several muscle lipid-binding proteins and the activity and mRNA level of muscle lipoprotein lipase (mLPL) were investigated in healthy, nonobese, nontrained (NT), mod...

138 citations


Journal ArticleDOI
TL;DR: The results suggest that the inhibitory effect of RE on adipocyte differentiation might be mediated through the down-regulated expression of adipogenic transcription factors and other specific genes.

123 citations


Journal ArticleDOI
TL;DR: It is shown that a recombinant tobacco LTP1 is able to load fatty acids and jasmonic acid and points out the crucial role of protein-specific lipophilic ligand interaction in the modulation of the protein activity.
Abstract: Plant lipid transfer proteins (LTPs) are small, cysteine-rich proteins secreted into the extracellular space. They belong to the pathogenesis-related proteins (PR-14) family and are believed to be involved in several physiological processes including plant disease resistance, although their precise biological function is still unknown. Here, we show that a recombinant tobacco LTP1 is able to load fatty acids and jasmonic acid. This LTP1 binds to specific plasma membrane sites, previously characterized as elicitin receptors, and is shown to be involved in the activation of plant defense. The biological properties of this LTP1 were compared with those of LTP1-linolenic and LTP1-jasmonic acid complexes. The binding curve of the LTP1-linolenic acid complex to purified tobacco plasma membranes is comparable to the curve obtained with LTP1. In contrast, the LTP1-jasmonic acid complex shows a strongly increased interaction with the plasma membrane receptors. Treatment of tobacco plants with LTP1-jasmonic acid resulted in an enhancement of resistance toward Phytophthora parasitica. These effects were absent upon treatment with LTP1 or jasmonic acid alone. This work presents the first evidence for a biological activity of a LTP1 and points out the crucial role of protein-specific lipophilic ligand interaction in the modulation of the protein activity.

120 citations


Journal ArticleDOI
TL;DR: The application of intregrative biological analysis to a mammalian disease model, the apolipoprotein E3-Leiden (APO*E3) transgenic mouse, is demonstrated, indicating that integrative biology is a powerful tool for rapid identification of early markers and key components of pathophysiologic processes.
Abstract: Integrative (or systems biology) is a new approach to analyzing biological entities as integrated systems of genetic, genomic, protein, metabolite, cellular, and pathway events that are in flux and interdependent. Here, we demonstrate the application of intregrative biological analysis to a mammalian disease model, the apolipoprotein E3-Leiden (APO*E3) transgenic mouse. Mice selected for the study were fed a normal chow diet and sacrificed at 9 weeks of age-conditions under which they develop only mild type I and II atherosclerotic lesions. Hepatic mRNA expression analysis showed a 25% decrease in APO A1 and a 43% increase in liver fatty acid binding protein expression between transgenic and wild type control mice, while there was no change in PPAR-alpha expression. On-line high performance liquid chromatography-mass spectrometry quantitative profiling of tryptic digests of soluble liver proteins and liver lipids, coupled with principle component analysis, enabled rapid identification of early protein and metabolite markers of disease pathology. These included a 44% increase in L-FABP in transgenic animals compared to controls, as well as an increase in triglycerides and select bioactive lysophosphatidylcholine species. A correlation analysis of identified genes, proteins, and lipids was used to construct an interaction network. Taken together, these results indicate that integrative biology is a powerful tool for rapid identification of early markers and key components of pathophysiologic processes, and constitute the first application of this approach to a mammalian system.

112 citations


Journal ArticleDOI
TL;DR: It was shown that insulin regulates protein expression of FAT/CD36, but not FABPpm, via the PI 3-kinase/Akt insulin-signaling pathway.
Abstract: Because insulin has been shown to stimulate long-chain fatty acid (LCFA) esterification in skeletal muscle and cardiac myocytes, we investigated whether insulin increased the rate of LCFA transport by altering the expression and the subcellular distribution of the fatty acid transporters FAT/CD36 and FABPpm. In cardiac myocytes, insulin very rapidly increased the expression of FAT/CD36 protein in a time- and dose-dependent manner. During a 2-h period, insulin (10 nM) increased cardiac myocyte FAT/CD36 protein by 25% after 60 min and attained a maximum after 90-120 min (+40-50%). There was a dose-dependent relationship between insulin (10(-12) to 10(-7) M) and FAT/CD36 expression. The half-maximal increase in FAT/CD36 protein occurred at 0.5 x 10(-9) M insulin, and the maximal increase occurred at 10(-9) to 10(-8) M insulin (+40-50%). There were similar insulin-induced increments in FAT/CD36 protein in cardiac myocytes (+43%) and in Langendorff-perfused hearts (+32%). In contrast to FAT/CD36, insulin did not alter the expression of FABPpm protein in either cardiac myocytes or the perfused heart. By use of specific inhibitors of insulin-signaling pathways, it was shown that insulin-induced expression of FAT/CD36 occurred via the PI 3-kinase/Akt insulin-signaling pathway. Subcellular fractionation of cardiac myocytes revealed that insulin not only increased the expression of FAT/CD36, but this hormone also targeted some of the FAT/CD36 to the plasma membrane while concomitantly lowering the intracellular depot of FAT/CD36. At the functional level, the insulin-induced increase in FAT/CD36 protein resulted in an increased rate of palmitate transport into giant vesicles (+34%), which paralleled the increase in plasmalemmal FAT/CD36 (+29%). The present studies have shown that insulin regulates protein expression of FAT/CD36, but not FABPpm, via the PI 3-kinase/Akt insulin-signaling pathway.

Journal ArticleDOI
TL;DR: The present study determined the optimal combination of murine PPAR/RXR subtypes for binding to known murine FABP-PPREs and to those found by computer search and tested their in vitro functionality, and demonstrated that only PPREs of L- and A-FABP promoters are functional, and that binding of PP AR/R XR heterodimers to a PPRE in vitro does not necessarily predict transactivation.
Abstract: Retinoic acids and long-chain fatty acids are lipophilic agonists of nuclear receptors such as RXRs (retinoic X receptors) and PPARs (peroxisome-proliferator-activated receptors) respectively. These agonists are also ligands of intracellular lipid-binding proteins, which include FABPs (fatty acid-binding proteins). We reported previously that L (liver-type)-FABP targets fatty acids to the nucleus of hepatocytes and affects PPARα activation, which binds together with an RXR subtype to a PPRE (peroxisome-proliferator-responsive element). In the present study, we first determined the optimal combination of murine PPAR/RXR subtypes for binding to known murine FABP-PPREs and to those found by computer search and then tested their in vitro functionality. We show that all PPARs bind to L-FABP-PPRE, PPARα, PPARγ1 and PPARγ2 to A (adipocyte-type)-FABP-PPRE. All PPAR/RXR heterodimers transactivate L-FABP-PPRE, best are combinations of PPARα with RXRα or RXRγ. In contrast, PPARα heterodimers do not transactivate A-FABP-PPRE, best combinations are of PPARγ1 with RXRα and RXRγ, and of PPARγ2 with all RXR subtypes. We found that the predicted E (epidermal-type)- and H (heart-type)-FABP-PPREs are not activated by any PPAR/RXR combination without or with the PPAR pan-agonist bezafibrate. In the same way, C2C12 myoblasts transfected with promoter fragments of E-FABP and H-FABP genes containing putative PPREs are also not activated through stimulation of PPARs with bezafibrate applied to the cells. These results demonstrate that only PPREs of L- and A-FABP promoters are functional, and that binding of PPAR/RXR heterodimers to a PPRE in vitro does not necessarily predict transactivation.

Journal ArticleDOI
TL;DR: The results suggest that under fasting conditions, hepatic L‐FABP contributes to hepatic LCFA oxidation and ketogenesis by a nontranscriptional mechanism, whereas L‐fABP can activate ketogenic gene expression in fed mice, whereas the mechanisms whereby L‐ FABP affects fatty acid oxidation may vary with physiological condition.
Abstract: Liver fatty acid binding protein (L-FABP) has been proposed to limit the availability of long-chain fatty acids (LCFA) for oxidation and for peroxisome proliferator-activated receptor alpha (PPAR-alpha), a fatty acid binding transcription factor that determines the capacity of hepatic fatty acid oxidation. Here, we used L-FABP null mice to test this hypothesis. Under fasting conditions, this mutation reduced beta-hydroxybutyrate (BHB) plasma levels as well as BHB release and palmitic acid oxidation by isolated hepatocytes. However, the capacity for ketogenesis was not reduced: BHB plasma levels were restored by octanoate injection; BHB production and palmitic acid oxidation were normal in liver homogenates; and hepatic expression of key PPAR-alpha target (MCAD, mitochondrial HMG CoA synthase, ACO, CYP4A3) and other (CPT1, LCAD) genes of mitochondrial and extramitochondrial LCFA oxidation and ketogenesis remained at wild-type levels. During standard diet, mitochondrial HMG CoA synthase mRNA was selectively reduced in L-FABP null liver. These results suggest that under fasting conditions, hepatic L-FABP contributes to hepatic LCFA oxidation and ketogenesis by a nontranscriptional mechanism, whereas L-FABP can activate ketogenic gene expression in fed mice. Thus, the mechanisms whereby L-FABP affects fatty acid oxidation may vary with physiological condition.

Journal ArticleDOI
TL;DR: It is demonstrated that in mammalian tissue FABPpm overexpression increased the rates of palmitate transport across the sarcolemma, an effect that is independent of any changes in FAT/CD36.
Abstract: Fatty acid translocase (FAT/CD36) is a key fatty acid transporter in skeletal muscle. However, the effects on fatty acid transport by another putative fatty acid transporter, plasma membrane-associ...

Journal ArticleDOI
TL;DR: Data demonstrate that L-FABP expression is up-regulated by statins through a mechanism involving PPARα, which is a statin target gene and might contribute to the triglyceride/non-esterified fatty acid-lowering properties of statins.

Journal ArticleDOI
TL;DR: Findings provide evidence that FABP4 and PPARgamma work together to influence a biologic pathway affecting insulin sensitivity and body composition, illustrating the importance of investigating the joint effect of genes in determining susceptibility for complex disease.
Abstract: Obesity and type 2 diabetes are closely related, multifactorial metabolic conditions characterized by alterations in energy metabolism and glucose homeostasis, respectively. Peroxisome proliferator-activated receptor γ (PPARγ) is a ligand-dependent transcription factor that regulates genes involved in lipid and glucose homeostasis, including the adipocyte-specific fatty acid-binding protein (FABP4). In turn, FABP4 binds fatty acids and transports them to the nucleus where the FABP4/fatty acid complex activates PPARγ in a positive feedback loop. In this study, we tested the hypothesis that the polymorphisms, FABP4-376 and PPARγ Pro12Ala, interactively influence insulin sensitivity and body composition in nondiabetic, Hispanic and non-Hispanic white males (n = 314) participating in the San Luis Valley Diabetes Study (SLVDS). Although the individual sites were not statistically significantly associated with any of the outcomes, we found statistically significant interaction terms in 2-way analysis of covariance (ANCOVA) models for homeostasis model assessment of insulin resistance (HOMA-IR) ( P = .014) and lean mass ( P = .019). While the PPARγ Pro12Ala site was the only statistically significant predictor of fat mass in the 2-way model ( P = .012), the FABP4 and PPARγ main effect terms individually became stronger when considered in one model compared with the analysis of each polymorphism separately. These findings provide evidence that FABP4 and PPARγ work together to influence a biologic pathway affecting insulin sensitivity and body composition, illustrating the importance of investigating the joint effect of genes in determining susceptibility for complex disease.

Journal ArticleDOI
TL;DR: It is demonstrated that loss of L-FABP occurs at the adenoma stage of colorectal tumour development and also indicates that L-fABP is a marker of colOREctal cancer differentiation.
Abstract: Liver fatty acid binding protein is a member of the fatty acid binding group of proteins that are involved in the intracellular transport of bioactive fatty acids and participate in intracellular signalling pathways, cell growth and differentiation. In this study we have used proteomics and immunohistochemistry to determine the changes in liver fatty acid binding protein in colorectal neoplasia. Comparative proteome analysis of paired samples colorectal cancer and normal colon identified consistent loss of liver fatty acid binding protein (L-FABP) in colorectal cancer compared with normal colon. To identify the changes in liver fatty acid binding protein expression during colorectal cancer development and progression the cell-specific expression of L-FABP was determined by immunohistochemistry in a series of colorectal cancers and colorectal adenomas. Decreased L-FABP immunoreactivity was significantly associated with poorly differentiated cancers (P<0.001). In colorectal adenomas there was a significant trend towards decreased staining of L-FABP in the larger adenomas (P<0.001). There was consistent L-FABP immunostaining of normal surface colonocytes. This study demonstrates that loss of L-FABP occurs at the adenoma stage of colorectal tumour development and also indicates that L-FABP is a marker of colorectal cancer differentiation.

Journal ArticleDOI
TL;DR: The results suggest that the LFABP T94A missense mutation could influence obesity indices as well as the risk to exhibit residual hypertriglyceridmia following a lipid-lowering therapy with fenofibrate.
Abstract: Fenofibrate, a peroxisome proliferated activated receptor alpha (PPARα) agonist, has been shown to decrease plasma triglyceride (TG) and increase plasma high-density lipoprotein (HDL) cholesterol levels despite a large interindividual variation in the response. Fenofibrate-activated PPARα binds to a DNA sequence element termed PPAR response element (PPRE) present in regulatory regions of target genes. A PPRE has been identified in the proximal 5′ flanking region of the gene encoding the liver fatty acid binding protein (LFABP). LFABP is a small cytosolic protein of 14 kDa present in the liver and the intestine and is a member of the superfamily of the fatty acid binding proteins (FABPs). FABPs play a role in the solubilization of long-chain fatty acids (LCFAs) and their CoA-ester to various intracellular organelles. FABPs serves as intracellular acceptors of LCFAs, and they may also have an impact in ligand-dependent transactivation of PPARs in trafficking LCFAs to the nucleus. Since PPARs are known to regulate the transcription of many genes involved in lipid metabolism, the importance of LFABP in fatty acid uptake has to be considered. The aim of this study was to verify whether genetic variations in the LFABP gene may impact on plasma lipoprotein/lipid levels in the fasting state as well as on the response to a lipid-lowering therapy with fenofibrate on plasma lipids and obesity variables. We also wanted to verify whether the presence of the PPARα L162V mutation interacts with genetic variants in LFABP gene. To achieve this goal, we first determined the genomic structure of the human LFABP gene and then designed intronic primers to sequence the coding regions, all exon-intron splicing boundaries, and the promoter region of the gene in 24 patients showing divergent plasma lipoprotein/lipid response to fenofibrate. Sequence analysis revealed the presence of a T94A missense mutation in exon 3. Interspecies comparison revealed that threonine 94 is conserved among species. We subsequently screened another sample of 130 French Canadian subjects treated with fenofibrate for the presence of the LFABP T94A mutation. Carriers of the A94 allele were at increased risk to exhibit plasma TG levels above 2.00 mmol/l after treatment with fenofibrate [2.75 (1.03–7.34); OR 95% confidence interval (CI)]. In addition, carriers of the A94 allele were characterized by higher baseline plasma-free fatty acid levels (FFA) (p=0.01) and by a lower body mass index (BMI) (p=0.05) and waist circumference (p=0.005) than T94 homozygotes. Moreover, PPARα L162V and LFABP T94A showed to have a synergistic effect on BMI (p interaction = 0.03). These results suggest that the LFABP T94A missense mutation could influence obesity indices as well as the risk to exhibit residual hypertriglyceridmia following a lipid-lowering therapy with fenofibrate.

Journal ArticleDOI
TL;DR: GATA-4 is critical for intestinal gene expression in vivo and in vitro results suggested GATA/HNF-1alpha interactions function in Fabpl regulation, and in vivo relevance was determined with subsequent experiments.
Abstract: Transcriptional regulation by GATA-4, GATA-5, and GATA-6 in intestine and liver was explored using a transgene constructed from the proximal promoter of the rat liver fatty acid binding protein gen

Journal ArticleDOI
TL;DR: This is the first report that in pigs circulating I-FABP is a useful marker for (mild) intestinal injury, and could possibly be used to monitor (intestinal) health in clinical practice.

Journal ArticleDOI
TL;DR: The micellar solubilization of fatty acids by bile salts and the factors regulating that process are discussed and a summary of the function of fatty-acid-binding proteins inside enterocytes is provided.
Abstract: This article reviews our current understanding of the uptake of fatty acids by the enterocytes of the intestine The micellar solubilization of fatty acids by bile salts and the factors regulating that process are discussed The mechanism of how micellar solubilization of fatty acids promotes the uptake of fatty acids by enterocytes and their relative importance is reviewed Additionally, discussion of the various fatty acid transporters located at the brush border membrane of the enterocytes is included Finally, a summary of our current understanding of the function of fatty-acid-binding proteins inside enterocytes is provided

Journal ArticleDOI
TL;DR: Chronic alterations in muscle activity can alter the rates of LCFA transport via different mechanisms, either by increasing the total muscle content of FAT/CD36 and FABPpm, resulting in a concomitant increase at the sarcolemma, or by reducing the plasma membrane content of these proteins in the absence of any changes in their total Muscle content.
Abstract: We examined whether skeletal muscle transport rates of long-chain fatty acids (LCFAs) were altered when muscle activity was eliminated (denervation) or increased (chronic stimulation). After 7 days of chronically stimulating the hindlimb muscles of female Sprague-Dawley rats, the LCFA transporter proteins fatty acid translocase (FAT)/CD36 (+43%) and plasma membrane-associated fatty acid-binding protein (FABPpm; +30%) were increased (P 0.05) after 7 days of denervation, the LCFA transport rate was markedly decreased (-39%). This was associated with reductions in plasmalemmal FAT/CD36 (-24%) and FABPpm (-28%; P < 0.05). These data suggest that these LCFA transporters were resequestered to their intracellular depot(s) within the muscle. Combining the results from these experiments indicated that changes in rates of LCFA transport were correlated with concomitant changes in plasmalemmal FAT/CD36 and FABPpm, but not necessarily with their total muscle content. Thus chronic alterations in muscle activity can alter the rates of LCFA transport via different mechanisms, either 1) by increasing the total muscle content of FAT/CD36 and FABPpm, resulting in a concomitant increase at the sarcolemma, or 2) by reducing the plasma membrane content of these proteins in the absence of any changes in their total muscle content.

Journal ArticleDOI
01 Jan 2004-Genesis
TL;DR: An in vivo system using these fish for screening genes required for gut development using 5′‐flanking sequences of the zebrafish L‐FABP gene is established and these fish can provide a valuable resource of labeled adult intestinal cells for in vivo or in vitro studies.
Abstract: Mammalian intestinal fatty acid-binding protein (I-FABP) is a small cytosolic protein and is thought to play a crucial role of intracellular fatty acid trafficking and metabolism in gut. To establish an in vivo system for investigating its tissue-specific regulation during zebrafish intestinal development, we isolated 5'-flanking sequences of the zebrafish L-FABP gene and used a transgenic strategy to generate gut-specific transgenic zebrafish with green/red fluorescent intestine. The 4.5-kb 5'-flanking sequence of zebrafish I-FABP gene was sufficient to direct fluorescent expression in intestinal tube, first observed in 3 dpf embryos and then continuously to the adult stage. This pattern of transgenic expression is consistent with the expression pattern of the endogenous gene. In all five transgenic lines 45-52% of the F2 inheritance rates were consistent with the ratio of Mendelian segregation. These fish can also provide a valuable resource of labeled adult intestinal cells for in vivo or in vitro studies. Finally, it is possible to establish an in vivo system using these fish for screening genes required for gut development. genesis 38:26-31, 2004.

Journal ArticleDOI
TL;DR: The crystal structure of chicken Lb-FABP complexed with cholic acid and that of the apoprotein refined to 2.0 A resolution are presented and the possibility that the L-FabPs might be more appropriately called liver bile acid-binding proteins (L-BABPs) is suggested.
Abstract: Two paralogous groups of liver fatty acid-binding proteins (FABPs) have been described: the mammalian type liver FABPs and the basic type (Lb-FABPs) characterized in several vertebrates but not in mammals. The two groups have similar sequences and share a highly conserved three-dimensional structure, but their specificity and stoichiometry of binding are different. The crystal structure of chicken Lb-FABP complexed with cholic acid and that of the apoprotein refined to 2.0 A resolution are presented in this paper. The two forms of the protein crystallize in different space groups, and significant changes are observed between the two conformations. The holoprotein binds two molecules of cholate in the interior cavity, and the contacts observed between the two ligands can help to explain the reason for this stoichiometry of binding. Most of the amino acids involved in ligand binding are conserved in other members of the Lb-FABP family. Since the amino acid sequence of the Lb-FABPs is more similar to that of the bile acid-binding proteins than to that of the L-FABPs, the possibility that the Lb-FABPs might be more appropriately called liver bile acid-binding proteins (L-BABPs) is suggested.

Journal ArticleDOI
TL;DR: The results on fatty acid composition and gene expression changes may open up new alleys in understanding the complex roles of cholesterol and PUFAs in normal and pathological visual and brain function.

Journal ArticleDOI
01 May 2004
TL;DR: Ingestion of a fat- rich diet induces an increase in FABPpm protein content in human skeletal muscle in contrast to the decrease seen during consumption of a carbohydrate-rich diet, and a higher utilization of plasma long-chain fatty acids during exercise in males compared with females could explain the gender-dependent influence of exercise training on FABppm.
Abstract: The first putative fatty acid transporter identified was plasma membrane fatty acid-binding protein (FABPpm). Later it was demonstrated that this protein is identical to the mitochondrial isoform of the enzyme aspartate aminotransferase. In recent years data from several cell types have emerged, indicating that FABPpm plays a role in the transport of long-chain saturated and unsaturated fatty acids. In the limited number of studies in human skeletal muscle it has been demonstrated that dietary composition and exercise training can influence the content of FABPpm. Ingestion of a fat-rich diet induces an increase in FABPpm protein content in human skeletal muscle in contrast to the decrease seen during consumption of a carbohydrate-rich diet. A similar effect of a fat-rich diet is also observed for cytosolic fatty acid-binding protein and fatty acid translocase/CD36 protein expression. Exercise training up regulates FABPpm protein content in skeletal muscle, but only in male subjects; no significant differences were observed in muscle FABPpm content in a cross-sectional study of female volunteers of varying training status, even though muscle FABPpm content did not depend on gender in the untrained state. A higher utilization of plasma long-chain fatty acids during exercise in males compared with females could explain the gender-dependent influence of exercise training on FABPpm. The mechanisms involved in the regulation of the function and expression of FABPpm protein remain to be clarified.

Journal ArticleDOI
TL;DR: Data characterized a functional promoter of the human aP2 gene; its in vitro pharmacological regulation in PPARγ-mediated reporter-gene assay may represent an interesting complement or an alternative to time-consuming procedures aiming at discriminating PPAR ligands with low lipogenic properties.
Abstract: Peroxisome proliferator-activated receptors (PPARs) regulate storage and catabolism of fats and carbohydrates. PPARgamma activity increases insulin sensitivity and adipocyte differentiation at the expense of adipogenesis and weight gain. The goal of this study was to 1) clone the promoter of the human adipocyte fatty acid binding protein (aP2) gene, namely fatty acid-binding protein-4, 2) characterize its pharmacological regulation, and 3) determine its putative predictability for adipogenesis. Among the selected PPAR agonists, rosiglitazone and pioglitazone displayed the highest maximal efficacy (E(max)) on reporter-gene assays in COS-7 cells cotransfected by either a galactosidase 4-response element-based or a human aP2 promoter-based Luc reporter vector, along with either chimeric or full-length human PPAR expression plasmids. The non-subtype-selective 2-(4-[2-(3-[2,4-difluorophenyl]-1-heptylureido)ethyl]phenoxy)-2-methyl-butyric acid (GW-2331) and the compounds [4-[3-(4-acetyl-3-hydroxy-2-propylphenoxy)-propoxyl]phenoxy]-acetic acid (L-165041), (4-((2S,5S)-5-(2-(bis(phenylmethyl)amino)-2-oxoethyl)-2-heptyl-4-oxo-3-thiazolidinyl)butyl)-benzoic acid (GW-0072), and indomethacin behaved as partial agonists relative to pioglitazone in full-length human aP2-PPARgamma2. Beyond their partial PPARgamma agonist properties, these compounds elicited a lower maximal up-regulation of mouse aP2 mRNA in 3T3-L1 adipocytes as compared with pioglitazone; these properties paralleled a time-dependent increase in neutral lipids. By contrast, the selective PPARalpha agonist 2,2-dichloro-12-(4-chlorophenyl)dodecanoic acid (BM-17.0744) neither stimulated the human aP2-PPARalpha promoter reporter-gene assay, thus demonstrating a specific interaction between PPARgamma and the aP2 promoter, nor affected lipogenesis in 3T3-L1 cells. Altogether, these data characterized a functional promoter of the human aP2 gene; its in vitro pharmacological regulation in PPARgamma-mediated reporter-gene assay may represent an interesting complement or an alternative to time-consuming procedures aiming at discriminating PPAR ligands with low lipogenic properties.

Journal ArticleDOI
TL;DR: expression in YSL, liver or pancreas has not been previously reported for fish or mammalian I-FABP genes and may be related to specific physiological differences between fishes and mammals.
Abstract: The intestinal fatty acid-binding protein (I-FABP) shows binding specificity for long-chain fatty acids and is proposed to be involved in uptake of dietary fatty acids and their intracellular transport. We have determined the sequence of the gene encoding I-FABP in zebrafish. The zebrafish I-FABP gene contains four exons interrupted by three introns. Radiation hybrid mapping assigned the I-FABP gene to linkage group 1. A 924 bp sequence 5' upstream of the initiation codon in the I-FABP gene contained several putative cis-acting regulatory elements. In adult zebrafish, reverse transcription-polymerase chain reaction (RT-PCR) detected I-FABP mRNA in intestine, brain, liver, muscle and testis. Quantitative RT-PCR demonstrated that I-FABP mRNA was most abundant in intestine, followed by brain. I-FABP mRNA levels were very low in muscle, testis, heart, liver, skin and ovary. RT-PCR using total RNA extracted from zebrafish embryos detected I-FABP mRNA as early as 12 h post-fertilization. Whole-mount in situ hybridization to zebrafish embryos detected I-FABP mRNA in the yolk syncytial layer (YSL) at early somitogenesis. Later during embryonic development the I-FABP mRNA was detected in the intestinal bulb, liver and pancreas primordium. Expression in YSL, liver or pancreas has not been previously reported for fish or mammalian I-FABP genes and may be related to specific physiological differences between fishes and mammals.

Journal ArticleDOI
TL;DR: Comparison with homologous fatty acid binding proteins suggests that the binding site of Sm14 is optimized to fit arachidonic acid, which is a vaccine target for schistosomiasis and proposed to have physiological relevance.
Abstract: Schistosoma mansoni fatty acid binding protein (Sm14) was crystallized with bound oleic acid (OLA) and arachidonic acid (ACD), and their structures were solved at 1.85 and 2.4 A resolution, respectively. Sm14 is a vaccine target for schistosomiasis, the second most prevalent parasitic disease in humans. The parasite is unable to synthesize fatty acids depending on the host for these nutrients. Moreover, arachidonic acid (ACD) is required to synthesize prostaglandins employed by schistosomes to evade the host's immune defenses. In the complex, the hydrocarbon tail of bound OLA assumes two conformations, whereas ACD adopts a unique hairpin-looped structure. ACD establishes more specific interactions with the protein, among which the most important is a ﷿-cation bond between Arg78 and the double bond at C8. Comparison with homologous fatty acid binding proteins suggests that the binding site of Sm14 is optimized to fit ACD. To test the functional implications of our structural data, the affinity of Sm14 for 1,8-anilinonaphthalenesulfonic acid (ANS) has been measured; moreover the binding constants of six different fatty acids were determined from their ability to displace ANS. OLA and ACD exhibited the highest affinities. To determine the rates of fatty acid binding and dissociation we carried out stopped flow kinetic experiments monitoring displacement by (and of) ANS. The binding rate constant of ligands is controlled by a slow pH dependent conformational change, which we propose to have physiological relevance.

Journal Article
TL;DR: In this paper, the authors discuss the importance of nuclear receptors and fatty acid binding/transport proteins in placental fatty acid uptake, transport and metabolism, and show that involvement of several nuclear transcription factors (PPARgamma, LXR, RXR, and SREBP-1) is critical in the expression of genes responsible for fatty acids uptake.
Abstract: In the feto-placental unit, preferential transport of maternal plasma arachidonic acid (20:4n-6) and docosahexaenoic acid (22:5n-3) across the placenta is of critical importance for fetal growth and development. More than 90 per cent of the fat deposition in the fetus occurs in the last 10 weeks of pregnancy. All of the n -3 and n -6 fatty acid structures acquired by the fetus have to cross the placenta and fetal blood are enriched in long chain polyunsaturated fatty acids (LCPUFA) relative to the maternal supply. Fatty acids cross the placental microvillous and basal membranes by simple diffusion and via the action of membrane bound (FAT, FATP and p-FABPpm) and cytoplasmic fatty acid-binding proteins (FABPs). The direction and magnitude of fatty acid flux is mainly dictated by the relative abundance of available binding sites. The existence of a fatty-acid-transport system comprising multiple binding proteins in human placenta may be essential to facilitate the preferential transport of maternal plasma fatty acids in order to meet the requirements of the growing fetus. The critical importance of long-chain fatty acids in cellular homeostasis demands an efficient uptake system for these fatty acids and their metabolism in tissues. In fact, involvement of several nuclear transcription factors (PPARgamma, LXR, RXR, and SREBP-1) is critical in the expression of genes responsible for fatty acids uptake, placental trophoblast differentiation and hCG production. These indicate that these receptors are potential regulators of placental lipid transfer and homeostasis. This review discusses importance of nuclear receptors and fatty acid binding/transport proteins in placental fatty acid uptake, transport and metabolism.