scispace - formally typeset
Search or ask a question

Showing papers on "Galectin published in 2021"


Journal ArticleDOI
TL;DR: The role of galectin-3 in fibrosis, the therapeutic strategies for inhibiting galect in fibrotic disease and the clinical landscape to date are examined.

45 citations


Journal ArticleDOI
TL;DR: In this article, the potential of Gal-9 as a reliable, sensitive and non-invasive biomarker of disease severity was reviewed. But, the authors focused on the elevated levels of Gal9 in autoimmune disorders, viral infections, parasitic invasion, cancer, acute liver failure, atopic dermatitis, chronic kidney disease, type-2 diabetes, coronary artery disease, atherosclerosis and benign infertility-related gynecological disorders.

40 citations


Journal ArticleDOI
TL;DR: Trefoil factor family peptides are promising players in the field of glycoimmunology, such as galectins and C-type lectins, and a hypothetical lectin-triggered inhibition of glycosylated transmembrane receptors by TFF peptides is discussed.
Abstract: Trefoil factor family peptides (TFF1, TFF2, TFF3), together with mucins, are typical exocrine products of mucous epithelia. Here, they act as a gastric tumor suppressor (TFF1) or they play different roles in mucosal innate immune defense (TFF2, TFF3). Minute amounts are also secreted as endocrine, e.g., by the immune and central nervous systems. As a hallmark, TFF peptides have different lectin activities, best characterized for TFF2, but also TFF1. Pathologically, ectopic expression occurs during inflammation and in various tumors. In this review, the role of TFF peptides during inflammation is discussed on two levels. On the one hand, the expression of TFF1-3 is regulated by inflammatory signals in different ways (upstream links). On the other hand, TFF peptides influence inflammatory processes (downstream links). The latter are recognized best in various Tff-deficient mice, which have completely different phenotypes. In particular, TFF2 is secreted by myeloid cells (e.g., macrophages) and lymphocytes (e.g., memory T cells), where it modulates immune reactions triggering inflammation. As a new concept, in addition to lectin-triggered activation, a hypothetical lectin-triggered inhibition of glycosylated transmembrane receptors by TFF peptides is discussed. Thus, TFFs are promising players in the field of glycoimmunology, such as galectins and C-type lectins.

23 citations


Journal ArticleDOI
TL;DR: Galectin-3 was shown to enhance the LPS-induced assembly of caspase-4/11 oligomers, leading to increased Caspase 4/11 activation as mentioned in this paper.
Abstract: Cytosolic lipopolysaccharides (LPSs) bind directly to caspase-4/5/11 through their lipid A moiety, inducing inflammatory caspase oligomerization and activation, which is identified as the noncanonical inflammasome pathway. Galectins, β-galactoside-binding proteins, bind to various gram-negative bacterial LPS, which display β-galactoside-containing polysaccharide chains. Galectins are mainly present intracellularly, but their interactions with cytosolic microbial glycans have not been investigated. We report that in cell-free systems, galectin-3 augments the LPS-induced assembly of caspase-4/11 oligomers, leading to increased caspase-4/11 activation. Its carboxyl-terminal carbohydrate-recognition domain is essential for this effect, and its N-terminal domain, which contributes to the self-association property of the protein, is also critical, suggesting that this promoting effect is dependent on the functional multivalency of galectin-3. Moreover, galectin-3 enhances intracellular LPS-induced caspase-4/11 oligomerization and activation, as well as gasdermin D cleavage in human embryonic kidney (HEK) 293T cells, and it additionally promotes interleukin-1β production and pyroptotic death in macrophages. Galectin-3 also promotes caspase-11 activation and gasdermin D cleavage in macrophages treated with outer membrane vesicles, which are known to be taken up by cells and release LPSs into the cytosol. Coimmunoprecipitation confirmed that galectin-3 associates with caspase-11 after intracellular delivery of LPSs. Immunofluorescence staining revealed colocalization of LPSs, galectin-3, and caspase-11 independent of host N-glycans. Thus, we conclude that galectin-3 amplifies caspase-4/11 oligomerization and activation through LPS glycan binding, resulting in more intense pyroptosis-a critical mechanism of host resistance against bacterial infection that may provide opportunities for new therapeutic interventions.

19 citations


Journal ArticleDOI
TL;DR: It is demonstrated that integrating non-natural, fluorinated glycans into nanomaterials can encode unprecedented selectivity with potential applications in biosensing and in some cases reversal of specificity can be achieved.
Abstract: Galectins are potential biomarkers and therapeutic targets. However, galectins display broad affinity towards β-galactosides meaning glycan-based (nano)biosensors lack the required selectivity and affinity. Using a polymer-stabilized nanoparticle biosensing platform, we herein demonstrate that the specificity of immobilised lacto-N-biose towards galectins can be ‘turned on/off’ by using site-specific glycan fluorination and in some cases reversal of specificity can be achieved. The panel of fluoro-glycans were obtained by a chemoenzymatic approach, exploiting BiGalK and BiGalHexNAcP enzymes from Bifidobacterium infantis which are shown to tolerate fluorinated glycans, introducing structural diversity which would be very laborious by chemical methods alone. These results demonstrate that integrating non-natural, fluorinated glycans into nanomaterials can encode unprecedented selectivity with potential applications in biosensing.

18 citations


Journal ArticleDOI
TL;DR: Galectins are ubiquitous in nature and have established themselves as a protein family of high therapeutic potential and play a role in a wide variety of diseases like cancer, fibrosis, and Alzheimers as mentioned in this paper.
Abstract: Galectins are ubiquitous in nature. They have established themselves as a protein family of high therapeutic potential and play a role in a wide variety of diseases like cancer, fibrosis, and Alzhe...

18 citations


Journal ArticleDOI
TL;DR: A newly developed neutralizing anti-human Gal-1 monoclonal antibody (Gal-1-mAb3), which specifically recognizes a unique epitope in Gal- 1 protein and exerts both angioregulatory and immunomodulatory activities is reported.
Abstract: Galectins, a family of highly conserved β-galactoside-binding proteins, control tumor progression by modulating different hallmarks of cancer. Galectin-1 (Gal-1), a proto-type member of this family, plays essential roles in tumor angiogenesis and immunosuppression by cross-linking glycosylated receptors on the surface of endothelial and immune cells. Targeted disruption of Gal-1 suppresses tumor growth by counteracting aberrant angiogenesis and reinforcing antitumor immunity in several experimental settings. Given the multiple therapeutic benefits associated with Gal-1 blockade, several Gal-1 inhibitors, including glycan-based competitors, antagonistic peptides, aptamers and neutralizing monoclonal antibodies, have been designed and evaluated in pre-clinical tumor models. Here we report the biochemical and functional characterization of a newly developed neutralizing anti-human Gal-1 monoclonal antibody (Gal-1-mAb3), which specifically recognizes a unique epitope in Gal-1 protein and exerts both angioregulatory and immunomodulatory activities. Blockade of Gal-1 function using Gal-1-mAb3, might be relevant not only in cancer but also in other pathologic conditions characterized by aberrant angiogenesis and uncontrolled immunosuppression.

17 citations


Journal ArticleDOI
TL;DR: The current insight attempts to provide an updated and balanced discussion on the role of galectin‐3 as a complex endogenous immune modulator with translational value in different neurological disorders including stroke and neurodegenerative diseases, such as Alzheimer's disease, Huntington's disease and Parkinson's disease.
Abstract: Galectins are soluble β-galactoside-binding proteins found in all multicellular organisms. Galectins may act as danger-associated molecular patterns in innate immunity and/or as pattern-recognition receptors that bind to pathogen-associated molecular patterns. Among different galectin family members, galectin-3 has been the focus of studies in neurodegenerative diseases in recent years. This lectin modulates brain innate immune responses, microglia activation patterns in physiological and pathophysiological settings in a context-dependent manner. Galectin-3 is considered as a pivotal tuner of macrophage and microglial activity. Indeed galectin-3 acts as a double edged sword in neuroinflammatory context and this multimodal lectin has diverse roles in physiological and pathophysiological conditions. Better understanding of galectin-3 physiology (its extracellular and intracellular actions) and structure (its C terminus vs. N terminus) is instrumental to design molecules that selectively modulate galectin-3 function toward neuroprotective phenotypes. Several experimental studies using different approaches and methods have demonstrated both protective and deleterious effects of galectin-3 in neuroinflammatory diseases. According to the crucial role of galectin-3 in modulation of innate immune response in brain, it is an attractive target in drug discovery of neurodegenerative diseases. The current insight attempts to provide an updated and balanced discussion on the role of galectin-3 as a complex endogenous immune modulator. This helps to have a better insight into the development of galectin-3 modulators with translational value in different neurological disorders including stroke and neurodegenerative diseases, such as Alzheimer's disease, Huntington's disease and Parkinson's disease.

16 citations


Journal ArticleDOI
TL;DR: The crystal structure of dimeric Gal‐14 was solved and it was found that its global fold is significantly different from that of other galectins with two β‐strands extending from one monomer and contributing to the carbohydrate‐binding domain of the other.
Abstract: The expression of prototype galectin-14 (Gal-14) in human placenta is higher than any other galectin, suggesting that it may play a role in fetal development and regulation of immune tolerance during pregnancy. Here, we solved the crystal structure of dimeric Gal-14 and found that its global fold is significantly different from that of other galectins with two β-strands (S5 and S6) extending from one monomer and contributing to the carbohydrate-binding domain of the other. The hemagglutination assay showed that this lectin could induce agglutination of chicken erythrocytes, even though lactose could not inhibit Gal-14-induced agglutination activity. Calorimetry indicates that lactose does not interact with this lectin. Compared to galectin-1, galectin-3, and galectin-8, Gal-14 has two key amino acids (a histidine and an arginine) in the normally conserved, canonical sugar-binding site, which are substituted by glutamine (Gln53) and histidine (His57), thus likely explaining why lactose binding to this lectin is very weak. Lactose was observed in the ligand-binding site of one Gal-14 structure, most likely because ligand binding is weak and crystals were allowed to grow over a long period of time in the presence of lactose. We also found that EGFP-tagged Gal-14 is primarily localized within the nucleus of different cell types. In addition, Gal-14 colocalized with c-Rel (a member of NF-κB family) in HeLa cells. These findings indicate that Gal-14 might regulate signal transduction pathways through NF-κB hubs. Overall, the present study provides impetus for further research into the function of Gal-14 in embryology.

15 citations


Journal ArticleDOI
TL;DR: In this article, the role of Galectin-3 as an extracellular ligand mediating cell-matrix adhesion was investigated in human adipose tissue-derived stem cells and human umbilical vein endothelial cells.
Abstract: Galectin-3 (Gal-3) is a β-galactoside-binding protein that influences various cell functions, including cell adhesion. We focused on the role of Gal-3 as an extracellular ligand mediating cell-matrix adhesion. We used human adipose tissue-derived stem cells and human umbilical vein endothelial cells that are promising for vascular tissue engineering. We found that these cells naturally contained Gal-3 on their surface and inside the cells. Moreover, they were able to associate with exogenous Gal-3 added to the culture medium. This association was reduced with a β-galactoside LacdiNAc (GalNAcβ1,4GlcNAc), a selective ligand of Gal-3, which binds to the carbohydrate recognition domain (CRD) in the Gal-3 molecule. This ligand was also able to detach Gal-3 newly associated with cells but not Gal-3 naturally present on cells. In addition, Gal-3 preadsorbed on plastic surfaces acted as an adhesion ligand for both cell types, and the cell adhesion was resistant to blocking with LacdiNAc. This result suggests that the adhesion was mediated by a binding site different from the CRD. The blocking of integrin adhesion receptors on cells with specific antibodies revealed that the cell adhesion to the preadsorbed Gal-3 was mediated, at least partially, by β1 and αV integrins-namely α5β1, αVβ3, and αVβ1 integrins.

15 citations


Journal ArticleDOI
TL;DR: Adhesion analyses showed that Gal-9 can bridge human circulating and naïve B cells to vascular endothelial cells (EC), while decelerating transendothelial migration, and interactions with naive B cells induced global transcription of gene families related to regulation of cell signaling and membrane/cytoskeletal dynamics.

Journal ArticleDOI
TL;DR: Gal‐1 is overexpressed in HTS at the mRNA and protein levels and may have a role in the development of scar phenotypes due to fibroblast over‐proliferation, collagen secretion, and dermal thickening.
Abstract: Upon healing, burn wounds often leave hypertrophic scars (HTSs) marked by excess collagen deposition, dermal and epidermal thickening, hypervascularity, and an increased density of fibroblasts. The Galectins, a family of lectins with a conserved carbohydrate recognition domain, function intracellularly and extracellularly to mediate a multitude of biological processes including inflammatory responses, angiogenesis, cell migration and differentiation, and cell-ECM adhesion. Galectin-1 (Gal-1) has been associated with several fibrotic diseases and can induce keratinocyte and fibroblast proliferation, migration, and differentiation into fibroproliferative myofibroblasts. In this study, Gal-1 expression was assessed in human and porcine HTS. In a microarray, galectins 1, 4, and 12 were upregulated in pig HTS compared to normal skin (fold change = +3.58, +6.11, and +3.03, FDR <0.01). Confirmatory qRT-PCR demonstrated significant upregulation of Galectin-1 (LGALS1) transcription in HTS in both human and porcine tissues (fold change = +7.78 and +7.90, P <.05). In pig HTS, this upregulation was maintained throughout scar development and remodeling. Immunofluorescent staining of Gal-1 in human and porcine HTS showed significantly increased fluorescence (202.5 ± 58.2 vs 35.2 ± 21.0, P <.05 and 276.1 ± 12.7 vs 69.7 ± 25.9, P <.01) compared to normal skin and co-localization with smooth muscle actin-expressing myofibroblasts. A strong positive correlation (R = .948) was observed between LGALS1 and Collagen type 1 alpha 1 mRNA expression. Gal-1 is overexpressed in HTS at the mRNA and protein levels and may have a role in the development of scar phenotypes due to fibroblast over-proliferation, collagen secretion, and dermal thickening. The role of galectins shows promise for future study and may lead to the development of a pharmacotherapy for treatment of HTS.

Journal ArticleDOI
Ming-Hsiang Hong1, I-Chun Weng1, Fang-Yen Li1, Wei-Han Lin1, Fu-Tong Liu1 
TL;DR: Galectins are animal lectins that recognize carbohydrates and play important roles in maintaining cellular homeostasis as mentioned in this paper, and they bind to host glycans displayed on damaged endocytic vesicles and accumulate around these damaged organelles.
Abstract: Galectins are animal lectins that recognize carbohydrates and play important roles in maintaining cellular homeostasis. Recent studies have indicated that under a variety of challenges, intracellular galectins bind to host glycans displayed on damaged endocytic vesicles and accumulate around these damaged organelles. Accumulated galectins then engage cellular proteins and subsequently control cellular responses, such as autophagy. In this review, we have summarized the stimuli that lead to the accumulation of galectins, the molecular mechanisms of galectin accumulation, and galectin-mediated cellular responses, and elaborate on the differential regulatory effects among galectins.

Journal ArticleDOI
TL;DR: It is shown that upon EGF binding, breast cancer cells carrying different O-glycans respond by transcribing different gene expression signatures, including EGFR/galectin-3/MUC1/β-catenin complex at the cell surface that is present in cells carrying short core 1-based O- glycans but absent in core 2 carrying cells.
Abstract: Aberrant mucin-type O-linked glycosylation is a common occurrence in cancer where the upregulation of sialyltransferases is often seen leading to the early termination of O-glycan chains. Mucin-type O-linked glycosylation is not limited to mucins and occurs on many cell surface glycoproteins including EGFR, where the number of sites can be limited. Upon EGF ligation, EGFR induces a signaling cascade and may also translocate to the nucleus where it directly regulates gene transcription, a process modulated by Galectin-3 and MUC1 in some cancers. Here, we show that upon EGF binding, breast cancer cells carrying different O-glycans respond by transcribing different gene expression signatures. MMP10, the principal gene upregulated when cells carrying sialylated core 1 glycans were stimulated with EGF, is also upregulated in ER-positive breast carcinoma reported to express high levels of ST3Gal1 and hence mainly core 1 sialylated O-glycans. In contrast, isogenic cells engineered to carry core 2 glycans upregulate CX3CL1 and FGFBP1 and these genes are upregulated in ER-negative breast carcinomas, also known to express longer core 2 O-glycans. Changes in O-glycosylation did not significantly alter signal transduction downstream of EGFR in core 1 or core 2 O-glycan expressing cells. However, striking changes were observed in the formation of an EGFR/galectin-3/MUC1/β-catenin complex at the cell surface that is present in cells carrying short core 1-based O-glycans but absent in core 2 carrying cells.

Journal ArticleDOI
TL;DR: In this paper, the authors used a human midbrain dopamine (mDA) neuronal culture model to provide evidence in support of a cellular mechanism that explains the cell-to-cell transfer of pathological forms of SNCA that are observed in PD.
Abstract: Numerous lines of evidence support the premise that the misfolding and subsequent accumulation of SNCA/α-synuclein (synuclein alpha) is responsible for the underlying neuronal pathology observed in Parkinson disease (PD) and other synucleinopathies. Moreover, the cell-to-cell transfer of these misfolded SNCA species is thought to be responsible for disease progression and the spread of cellular pathology throughout the brain. Previous work has shown that when exogenous, misfolded SNCA fibrils enter cells through endocytosis, they can damage and rupture the membranes of their endocytotic vesicles in which they are trafficked. Rupture of these vesicular membranes exposes intralumenal glycans leading to galectin protein binding, subsequent autophagic protein recruitment, and, ultimately, their introduction into the autophagic-lysosomal pathway. Increasing evidence indicates that both pathological and non-pathological SNCA species undergo autophagy-dependent unconventional secretion. While other proteins have also been shown to be secreted from cells by autophagy, what triggers this release process and how these specific proteins are recruited to a secretory autophagic pathway is largely unknown. Here, we use a human midbrain dopamine (mDA) neuronal culture model to provide evidence in support of a cellular mechanism that explains the cell-to-cell transfer of pathological forms of SNCA that are observed in PD. We demonstrate that LGALS3 (galectin 3) mediates the release of SNCA following vesicular damage. SNCA release is also dependent on TRIM16 (tripartite motif containing 16) and ATG16L1 (autophagy related 16 like 1), providing evidence that secretion of SNCA is mediated by an autophagic secretory pathway.

Journal ArticleDOI
TL;DR: In this paper, the authors found that neutrophils in healthy individuals express surface Galectin-9 (Gal-9), which is downregulated upon activation, and is consistently downregulated in HIV-infected individuals.
Abstract: The interaction of neutrophils with T cells has been the subject of debate and controversies. Previous studies have suggested that neutrophils may suppress or activate T cells. Despite these studies, the interaction between neutrophils and T cells has remained a largely unexplored field. Here, based on our RNA sequencing (RNA-seq) analysis, we found that neutrophils have differential transcriptional and functional profiling depending on the CD4 T-cell count of the HIV-infected individual. In particular, we identified that neutrophils in healthy individuals express surface Galectin-9 (Gal-9), which is down-regulated upon activation, and is consistently down-regulated in HIV-infected individuals. However, down-regulation of Gal-9 was associated with CD4 T-cell count of patients. Unstimulated neutrophils express high levels of surface Gal-9 that is bound to CD44, and, upon stimulation, neutrophils depalmitoylate CD44 and induce its movement out of the lipid raft. This process causes the release of Gal-9 from the surface of neutrophils. In addition, we found that neutrophil-derived exogenous Gal-9 binds to cell surface CD44 on T cells, which promotes LCK activation and subsequently enhances T-cell activation. Furthermore, this process was regulated by glycolysis and can be inhibited by interleukin (IL)-10. Together, our data reveal a novel mechanism of Gal-9 shedding from the surface of neutrophils. This could explain elevated plasma Gal-9 levels in HIV-infected individuals as an underlying mechanism of the well-characterized chronic immune activation in HIV infection. This study provides a novel role for the Gal-9 shedding from neutrophils. We anticipate that our results will spark renewed investigation into the role of neutrophils in T-cell activation in other acute and chronic conditions, as well as improved strategies for modulating Gal-9 shedding.

Journal ArticleDOI
TL;DR: Galectins and tyrosine kinases (RTKs) constitute a large group of cell surface proteins that mediate communication of cells with extracellular environment RTK recognize external signals and transfer information to the cell interior, modulating key cellular activities, like metabolism, proliferation, motility, or death as mentioned in this paper.

Journal ArticleDOI
09 Feb 2021
TL;DR: In this paper, Galectin-3 (Gal3) and its newly identified binding partner lactotransferrin are transported in a glycosphingolipid-dependent manner from the apical to the basolateral membrane.
Abstract: Glycoproteins and glycolipids at the plasma membrane contribute to a range of functions from growth factor signaling to cell adhesion and migration Glycoconjugates undergo endocytic trafficking According to the glycolipid-lectin (GL-Lect) hypothesis, the construction of tubular endocytic pits is driven in a glycosphingolipid-dependent manner by sugar-binding proteins of the galectin family Here, we provide evidence for a function of the GL-Lect mechanism in transcytosis across enterocytes in the mouse intestine We show that galectin-3 (Gal3) and its newly identified binding partner lactotransferrin are transported in a glycosphingolipid-dependent manner from the apical to the basolateral membrane Transcytosis of lactotransferrin is perturbed in Gal3 knockout mice and can be rescued by exogenous Gal3 Inside enterocytes, Gal3 is localized to hallmark structures of the GL-Lect mechanism, termed clathrin-independent carriers These data pioneer the existence of GL-Lect endocytosis in vivo and strongly suggest that polarized trafficking across the intestinal barrier relies on this mechanism

Journal ArticleDOI
TL;DR: Galectins are β-galactoside-binding lectins consisting of 15 members in mammals as mentioned in this paper, and they regulate various physiological and pathological events in the central nervous system.
Abstract: Galectins are β-galactoside-binding lectins consisting of 15 members in mammals. Galectin-1,-3,-4,-8, and -9 are predominantly expressed in the central nervous system (CNS) and regulate various physiological and pathological events. This review summarizes the current knowledge of the cellular expression and role of galectins in the CNS, and discusses their functions in neurite outgrowth, myelination, and neural stem/progenitor cell niches, as well as in ischemic/hypoxic/traumatic injuries and neurodegenerative diseases such as multiple sclerosis. Galectins are expressed in both neurons and glial cells. Galectin-1 is mainly expressed in motoneurons, whereas galectin-3-positive neurons are broadly distributed throughout the brain, especially in the hypothalamus, indicating its function in the regulation of homeostasis, stress response, and the endocrine/autonomic system. Astrocytes predominantly contain galectin-1, and galectin-3 and-9 are upregulated along with its activation. Activated, but not resting, microglia contain galectin-3, supporting its phagocytic activity. Galectin-1,-3, and -4 are characteristically expressed during oligodendrocyte differentiation. Galectin-3 from microglia promotes oligodendrocyte differentiation and myelination, while galectin-1 and axonal galectin-4 suppress its differentiation and myelination. Galectin-1- and- 3-positive cells are involved in neural stem cell niche formation in the subventricular zone and hippocampal dentate gyrus, and the migration of newly generated neurons and glial cells to the olfactory bulb or damaged lesions. In neurodegenerative diseases, galectin-1,-8, and -9 have neuroprotective and anti-inflammatory activities. Galectin-3 facilitates pro-inflammatory action; however, it also plays an important role during the recovery period. Several ligand glycoconjugates have been identified so far such as laminin, integrins, neural cell adhesion molecule L1, sulfatide, neuropilin-1/plexinA4 receptor complex, triggering receptor on myeloid cells 2, and T cell immunoglobulin and mucin domain. N-glycan branching on lymphocytes and oligodendroglial progenitors mediated by β1,6-N-acetylglucosaminyltransferase V (Mgat5/GnTV) influences galectin-binding, modulating inflammatory responses and remyelination in neurodegenerative diseases. De-sulfated galactosaminoglycans such as keratan sulfate are potential ligands for galectins, especially galectin-3, regulating neural regeneration. Galectins have multitudinous functions depending on cell type and context as well as post-translational modifications, including oxidization, phosphorylation, S-nitrosylation, and cleavage, but there should be certain rules in the expression patterns of galectins and their ligand glycoconjugates, possibly related to glucose metabolism in cells.

Journal ArticleDOI
TL;DR: The state-of-the-art of the role that different galectin family members play in immune cells, contributing to the complex inflammatory diseases is reviewed.

Journal ArticleDOI
26 Sep 2021-Cancers
TL;DR: Galectins are proteins with high-affinity β-galactoside-binding sites that function in a variety of signaling pathways through interactions with glycoproteins.
Abstract: Galectins are proteins with high-affinity β-galactoside-binding sites that function in a variety of signaling pathways through interactions with glycoproteins. The known contributions of galectins-1, -3, -7, -8, and -9 to angiogenesis, metastasis, cell division, and evasion of immune destruction led us to investigate the circulating levels of these galectins in cancer patients. This study compares galectin concentrations by enzyme-linked immunosorbent assay (ELISA) from each stage of breast, lung, and colon cancer. Galectins-1 and -7, which share a prototype structure, were found to have statistically significant increases in breast and lung cancer. Of the tandem-repeat galectins, galectin-8 showed no statistically significant change in these cancer types, but galectin-9 was increased in colon and lung cancer. Galectin-3 is the only chimera-type galectin and was increased in all stages of breast, colon, and lung cancer. In conclusion, there were significant differences in the galectin levels in patients with these cancers compared with healthy controls, and galectin levels did not significantly change from stage to stage. These findings suggest that further research on the roles of galectins early in disease pathogenesis may lead to novel indications for galectin inhibitors.

Journal ArticleDOI
TL;DR: In this article, the authors discuss the relationship between the expression of N-glycans and EMT of different types of O-Glycans, including the classical mucin-type, O-GlcNAc, Olinked fucose, o-linked mannose and glycolipids.
Abstract: Glycosylation consists in the covalent, enzyme mediated, attachment of sugar chains to proteins and lipids. A large proportion of membrane and secreted proteins are indeed glycoproteins, while glycolipids are fundamental component of cell membranes. The biosynthesis of sugar chains is mediated by glycosyltransferases, whose level of expression represents a major factor of regulation of the glycosylation process. In cancer, glycosylation undergoes profound changes, which often contribute to invasion and metastasis. Epithelial to mesenchymal transition (EMT) is a key step in metastasis formation and is intimately associated with glycosylation changes. Numerous carbohydrate structures undergo up- or down-regulation during EMT and often regulate the process. In this review, we will discuss the relationship with EMT of the N-glycans, of the different types of O-glycans, including the classical mucin-type, O-GlcNAc, O-linked fucose, O-linked mannose and of glycolipids. Finally, we will discuss the role in EMT of galectins, a major class of mammalian galactoside-binding lectins. While the expression of specific carbohydrate structures can be used as a marker of EMT and of the propensity to migrate, the manipulation of the glycosylation machinery offers new perspectives for cancer treatment through inhibition of EMT.

Journal ArticleDOI
TL;DR: The chemokine-galectin heterodimer concept was introduced in this article, and experimental validation of CXCL12 and galectin-3 as proof-of-principle is presented.
Abstract: Trafficking of leukocytes and their local activity profile are of pivotal importance for many (patho)physiological processes. Fittingly, microenvironments are complex by nature, with multiple mediators originating from diverse cell types and playing roles in an intimately regulated manner. To dissect aspects of this complexity, effectors are initially identified and structurally characterized, thus prompting familial classification and establishing foci of research activity. In this regard, chemokines present themselves as role models to illustrate the diversification and fine-tuning of inflammatory processes. This in turn discloses the interplay among chemokines, their cell receptors and cognate glycosaminoglycans, as well as their capacity to engage in new molecular interactions that form hetero-oligomers between themselves and other classes of effector molecules. The growing realization of versatility of adhesion/growth-regulatory galectins that bind to glycans and proteins and their presence at sites of inflammation led to testing the hypothesis that chemokines and galectins can interact with each other by protein–protein interactions. In this review, we present some background on chemokines and galectins, as well as experimental validation of this chemokine–galectin heterodimer concept exemplified with CXCL12 and galectin-3 as proof-of-principle, as well as sketch out some emerging perspectives in this arena.

Journal ArticleDOI
TL;DR: Zhang et al. as discussed by the authors investigated whether Galectin (Gal)-3 inhibitors can enhance the antitumor effect of PD-L1 blockade in lung cancer using the NSCLC-derived cell line A549.

Journal ArticleDOI
TL;DR: Zhang et al. as discussed by the authors showed that galectin-9 (encoded by lgals9) attenuated NLRP3 inflammasome activation by promoting protein degradation in primary peritoneal macrophages of C57BL/6J mice.
Abstract: NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome has been implicated in a variety of inflammatory disorders, and its activation should be tightly controlled to avoid detrimental effects. NLRP3 protein expression is considered as the rate-limiting step for NLRP3 inflammasome activation. In this study, we show that galectin-9 (encoded by lgals9) attenuated NLRP3 inflammasome activation by promoting the protein degradation of NLRP3 in primary peritoneal macrophages of C57BL/6J mice. Lgals9 deficiency enhances NLRP3 inflammasome activation and promotes NLRP3-dependent inflammation in C57BL/6J mice in vivo. Mechanistically, galectin-9 interacts with NLRP3, promotes the formation of NLRP3/p62 (an autophagic cargo receptor, also known as SQSTM1) complex, and thus facilitates p62-dependent autophagic degradation of NLRP3 in primary peritoneal macrophages of C57BL/6J mice and HEK293T cells. Therefore, we identify galectin-9 as an "eat-me" signal for selective autophagy of NLRP3 and uncover the potential roles of galectins in controlling host protein degradation. Furthermore, our work suggests galectin-9 as a priming therapeutic target for the diseases caused by improper NLRP3 inflammasome activation.

Journal ArticleDOI
20 Sep 2021
TL;DR: In this article, the authors provide a basic overview of the current knowledge regarding the role of galectins in angiogenesis and highlight their role in endothelial cell function and biology.
Abstract: Angiogenesis, the growth of new blood vessels out of existing vessels, is a complex and tightly regulated process. It is executed by the cells that cover the inner surface of the vasculature, i.e., the endothelial cells. During angiogenesis, these cells adopt different phenotypes, which allows them to proliferate and migrate, and to form tube-like structures that eventually result in the generation of a functional neovasculature. Multiple internal and external cues control these processes and the galectin protein family was found to be indispensable for proper execution of angiogenesis. Over the last three decades, several members of this glycan-binding protein family have been linked to endothelial cell functioning and to different steps of the angiogenesis cascade. This review provides a basic overview of our current knowledge regarding galectins in angiogenesis. It covers the main findings with regard to the endothelial expression of galectins and highlights their role in endothelial cell function and biology.

Journal ArticleDOI
TL;DR: In this paper, the authors conducted flow cytometric analysis to determine the cells' ability to undergo immunogenic cell death (ICD) and their expression of the two immunosuppressive proteins programmed deathligand 1 (PD-L1) and galectin-9 (Gal-9).
Abstract: Surgery alone or combined with chemo- and/or radiation therapy remains the primary treatment for gastric cancer (GC) to date and immunotherapeutic tools such as monoclonal antibodies are only slowly being implemented. This is partly due to the fact that the immune microenvironment in GC during chemoradiation and other treatment modalities is still poorly understood. 7 gastric cancer (GC) cell lines were tested for their response to chemoradiation using 5-FU in combination with X-ray irradiation. We conducted flow cytometric analysis to determine the cells' ability to undergo immunogenic cell death (ICD) and their expression of the two immunosuppressive proteins programmed death-ligand 1 (PD-L1) and galectin-9 (Gal-9). We evaluated the overall immunogenicity of two cell lines (MKN7, MKN74) in co-culture experiments with human monocyte-derived dendritic cells (Mo-DCs). Chemoradiation induces distinct responses in different GC cell lines. We observe ICD in vitro in all tested GC cell lines in the form of calreticulin (CRT) translocation to the plasma membrane. As a resistance mechanism, these cells also upregulated Gal-9 and PD-L1. Mo-DC maturation experiments showed that GCs provoked the maturation of Mo-DCs after chemoradiation in vitro. The addition of α-PD-L1 blocking antibody further enhanced the immunogenicity of these cells while improving DC viability. Blocking Tim-3, as the main receptor for Gal-9, had no such effect. Our findings suggest that the benefits of chemoradiation can substantially depend on tumor subtype and these benefits can be offset by induced immune evasion in GC. Combination treatment using checkpoint inhibitors could potentially lead to enhanced immune responses and yield better patient outcomes.

Journal ArticleDOI
TL;DR: Gal-16 exists as a monomer and its ligand binding is significantly different from that of other prototype galectins, suggesting that it has a novel function(s), which indicates that Gal-16 may regulate signal transduction pathways via the c-Rel hub in B or T cells at the maternal- fetal interface.

Journal ArticleDOI
TL;DR: The molecular and cellular basis of how galectins modulate inflammatory reactions and the potential issues that might lead to misrepresentation of the exact biological functions of galectin are described.

Journal ArticleDOI
TL;DR: Galectin-3 (Gal-3) as mentioned in this paper was the first Galectin shown to engage microbial glycans, and exhibited high binding toward mammalian blood group A, B, and αGal antigens in a glycan microarray format.
Abstract: While adaptive immunity enables the recognition of a wide range of microbial antigens, immunological tolerance limits reactively toward self to reduce autoimmunity. Some bacteria decorate themselves with self-like antigens as a form of molecular mimicry to limit recognition by adaptive immunity. Recent studies suggest that galectin-4 (Gal-4) and galectin-8 (Gal-8) may provide a unique form of innate immunity against molecular mimicry by specifically targeting microbes that decorate themselves in self-like antigens. However, the binding specificity and antimicrobial activity of many human galectins remain incompletely explored. In this study, we defined the binding specificity of galectin-3 (Gal-3), the first galectin shown to engage microbial glycans. Gal-3 exhibited high binding toward mammalian blood group A, B, and αGal antigens in a glycan microarray format. In the absence of the N-terminal domain, the C-terminal domain of Gal-3 (Gal-3C) alone exhibited a similar overall binding pattern, but failed to display the same level of binding for glycans over a range of concentrations. Similar to the recognition of mammalian glycans, Gal-3 and Gal-3C also specifically engaged distinct microbial glycans isolated and printed in a microarray format, with Gal-3 exhibiting higher binding at lower concentrations toward microbial glycans than Gal-3C. Importantly, Gal-3 and Gal-3C interactions on the microbial microarray accurately predicted actual interactions toward intact microbes, with Gal-3 and Gal-3C displaying carbohydrate-dependent binding toward distinct strains of Providentia alcalifaciens and Klebsiella pneumoniae that express mammalian-like antigens, while failing to recognize similar strains that express unrelated antigens. While both Gal-3 and Gal-3C recognized specific strains of P. alcalifaciens and K. pneumoniae, only Gal-3 was able to exhibit antimicrobial activity even when evaluated at higher concentrations. These results demonstrate that while Gal-3 and Gal-3C specifically engage distinct mammalian and microbial glycans, Gal-3C alone does not possess antimicrobial activity.