scispace - formally typeset
Search or ask a question

Showing papers on "Long-term potentiation published in 1997"


Journal ArticleDOI
06 Feb 1997-Nature
TL;DR: It is shown that weak tetanic stimulation, which ordinarily leads only to early LTP, or repeated tetanization in the presence of protein-Synthesis inhibitors, each results in protein-synthesis-dependent late LTP; this indicates that the persistence of LTP depends not only on local events during its induction, but also on the prior activity of the neuron.
Abstract: Repeated stimulation of hippocampal neurons can induce an immediate and prolonged increase in synaptic strength that is called long-term potentiation (LTP)—the primary cellular model of memory in the mammalian brain1. An early phase of LTP (lasting less than three hours) can be dissociated from late-phase LTP by using inhibitors of transcription and translation2–8. Because protein synthesis occurs mainly in the cell body9–12, whereas LTP is input-specific, the question arises of how the synapse specificity of late LTP is achieved without elaborate intracellular protein trafficking. We propose that LTP initiates the creation of a short-lasting protein-synthesis-independent 'synaptic tag' at the potentiated synapse which sequesters the relevant protein(s) to establish late LTP. In support of this idea, we now show that weak tetanic stimulation, which ordinarily leads only to early LTP, or repeated tetanization in the presence of protein-synthesis inhibitors, each results in protein-synthesis-dependent late LTP, provided repeated tetanization has already been applied at another input to the same population of neurons. The synaptic tag decays in less than three hours. These findings indicate that the persistence of LTP depends not only on local events during its induction, but also on the prior activity of the neuron.

1,577 citations


Journal ArticleDOI
10 Jan 1997-Science
TL;DR: Action potentials provide a synaptically controlled, associative signal to the dendrites for Hebbian modifications of synaptic strength and induced a robust LTP in CA1 neurons.
Abstract: The role of back-propagating dendritic action potentials in the induction of long-term potentiation (LTP) was investigated in CA1 neurons by means of dendritic patch recordings and simultaneous calcium imaging. Pairing of subthreshold excitatory postsynaptic potentials (EPSPs) with back-propagating action potentials resulted in an amplification of dendritic action potentials and evoked calcium influx near the site of synaptic input. This pairing also induced a robust LTP, which was reduced when EPSPs were paired with non-back-propagating action potentials or when stimuli were unpaired. Action potentials thus provide a synaptically controlled, associative signal to the dendrites for Hebbian modifications of synaptic strength.

1,337 citations


Journal ArticleDOI
TL;DR: In transgenic mice, overexpression of GAP-43 leads to the spontaneous formation of new synapses and enhanced sprouting after injury, and the protein might play an important role in mediating experience-dependent plasticity.

1,250 citations


Journal ArticleDOI
11 Dec 1997-Nature
TL;DR: It is shown that fear conditioning alters auditory CS-evoked responses in LA in the same way as LTP induction, and these may underlie the long-term associative plasticity that constitutes memory of the conditioning experience.
Abstract: Long-term potentiation (LTP) is an experience-dependent form of neural plasticity believed to involve mechanisms that underlie memory formation. LTP has been studied most extensively in the hippocampus, but the relation between hippocampal LTP and memory has been difficult to establish. Here we explore the relation between LTP and memory in fear conditioning, an amygdala-dependent form of learning in which an innocuous conditioned stimulus (CS) elicits fear responses after being associatively paired with an aversive unconditioned stimulus (US). We have previously shown that LTP induction in pathways that transmit auditory CS information to the lateral nucleus of the amygdala (LA) increases auditory-evoked field potentials in this nucleus. Now we show that fear conditioning alters auditory CS-evoked responses in LA in the same way as LTP induction. The changes parallel the acquisition of CS-elicited fear behaviour, are enduring, and do not occur if the CS and US remain unpaired. LTP-like associative processes thus occur during fear conditioning, and these may underlie the long-term associative plasticity that constitutes memory of the conditioning experience.

1,248 citations


Journal ArticleDOI
07 Mar 1997-Cell
TL;DR: In transgenic mice that express R(AB), an inhibitory form of the regulatory subunit of PKA, only in the hippocampus and other forebrain regions, hippocampal PKA activity was reduced, and L-LTP was significantly decreased in area CA1, without affecting basal synaptic transmission or the early phase of LTP.

1,204 citations


Journal ArticleDOI
TL;DR: In this paper, the authors investigate self-sustaining stable states (attractors) in networks of integrate-and-fire neurons and study the effect of learning in a local module, expressed in synaptic modifications in specific populations of synapses.
Abstract: We investigate self-sustaining stable states (attractors) in networks of integrate-and-fire neurons. First, we study the stability of spontaneous activity in an unstructured network. It is shown that the stochastic background activity, of 1‐5 spikes/s, is unstable if all neurons are excitatory. On the other hand, spontaneous activity becomes self-stabilizing in presence of local inhibition, given reasonable values of the parameters of the network. Second, in a network sustaining physiological spontaneous rates, we study the effect of learning in a local module, expressed in synaptic modifications in specific populations of synapses. We find that if the average synaptic potentiation (LTP) is too low, no stimulus specific activity manifests itself in the delay period. Instead, following the presentation and removal of any stimulus there is, in the local module, a delay activity in which all neurons selective (responding visually) to any of the stimuli presented for learning have rates which gradually increase with the amplitude of synaptic potentiation. When the average LTP increases beyond a critical value, specific local attractors (stable states) appear abruptly against the background of the global uniform spontaneous attractor. In this case the local module has two available types of collective delay activity: if the stimulus is unfamiliar, the activity is spontaneous; if it is similar to a learned stimulus, delay activity is selective. These new attractors reflect the synaptic structure developed during learning. In each of them a small population of neurons have elevated rates, which depend on the strength of LTP. The remaining neurons of the module have their activity at spontaneous rates. The predictions made in this paper could be checked by single unit recordings in delayed reponse experiments.

1,097 citations


Journal ArticleDOI
27 Jun 1997-Science
TL;DR: Induction of LTP increased the phosphorus-32 labeling of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA-Rs), which mediate rapid excitatory synaptic transmission and provides a postsynaptic molecular mechanism for synaptic plasticity.
Abstract: Long-term potentiation (LTP), a cellular model of learning and memory, requires calcium-dependent protein kinases. Induction of LTP increased the phosphorus-32 labeling of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptors (AMPA-Rs), which mediate rapid excitatory synaptic transmission. This AMPA-R phosphorylation appeared to be catalyzed by Ca2+- and calmodulin-dependent protein kinase II (CaM-KII): (i) it correlated with the activation and autophosphorylation of CaM-KII, (ii) it was blocked by the CaM-KII inhibitor KN-62, and (iii) its phosphorus-32 peptide map was the same as that of GluR1 coexpressed with activated CaM-KII in HEK-293 cells. This covalent modulation of AMPA-Rs in LTP provides a postsynaptic molecular mechanism for synaptic plasticity.

1,079 citations


Journal ArticleDOI
TL;DR: It is reported that theMAPK cascade is required for hippocampal long term potentiation (LTP), a robust and widely studied form of synaptic plasticity, and the first demonstration of a role for the MAPK cascade in the activity-dependent modification of synaptic connections between neurons in the adult mammalian nervous system is provided.

819 citations


Journal ArticleDOI
11 Dec 1997-Nature
TL;DR: One of the first in vitro measures of synaptic plasticity resulting from emotional learning by whole animals is reported, reporting a long-lasting increase in the synaptic efficacy of the MGN–LA pathway attributable to fear-conditioning itself, rather than an electrically induced model of learning.
Abstract: The amygdala plays a critical role in the mediation of emotional responses, particularly fear, in both humans and animals. Fear conditioning, a conditioned learning paradigm, has served as a model for emotional learning in animals, and the neuroanatomical circuitry underlying the auditory fear-conditioning paradigm is well characterized. Synaptic transmission in the medial geniculate nucleus (MGN) to lateral nucleus of the amygdala (LA) pathway, a key segment of the auditory fear conditioning circuit, is mediated largely through N-methyl-D-aspartate (NMDA) and non-NMDA (such as alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)) glutamate receptors; the potential for neural plasticity in this pathway is suggested by its capacity to support long-term potentiation (LTP). Here we report a long-lasting increase in the synaptic efficacy of the MGN-LA pathway attributable to fear-conditioning itself, rather than an electrically induced model of learning. Fear-conditioned animals show a presynaptic facilitation of AMPA-receptor-mediated transmission, directly measured in vitro with whole-cell recordings in lateral amygdala neurons. These findings represent one of the first in vitro measures of synaptic plasticity resulting from emotional learning by whole animals.

780 citations


Journal ArticleDOI
TL;DR: Estradiol treatment increases sensitivity of CA1 pyramidal cells to NMDA receptor-mediated synaptic input; further, sensitivity to NMda receptor- mediated synaptic input is well correlated with dendritic spine density.
Abstract: Previous studies have shown that estradiol induces new dendritic spines and synapses on hippocampal CA1 pyramidal cells. We have assessed the consequences of estradiol-induced dendritic spines on CA1 pyramidal cell intrinsic and synaptic electrophysiological properties. Hippocampal slices were prepared from ovariectomized rats treated with either estradiol or oil vehicle. CA1 pyramidal cells were recorded and injected with biocytin to visualize spines. The association of dendritic spine density and electrophysiological parameters for each cell was then tested using linear regression analysis. We found a negative relationship between spine density and input resistance; however, no other intrinsic property measured was significantly associated with dendritic spine density. Glutamate receptor autoradiography demonstrated an estradiol-induced increase in binding to NMDA, but not AMPA, receptors. We then used input/output (I/O) curves (EPSP slope vs stimulus intensity) to determine whether the sensitivity of CA1 pyramidal cells to synaptic input is correlated with dendritic spine density. Consistent with the lack of an estradiol effect on AMPA receptor binding, we observed no relationship between the slope of an I/O curve generated under standard recording conditions, in which the AMPA receptor dominates the EPSP, and spine density. However, recording the pharmacologically isolated NMDA receptor-mediated component of the EPSP revealed a significant correlation between I/O slope and spine density. These results indicate that, in parallel with estradiol-induced increases in spine/synapse density and NMDA receptor binding, estradiol treatment increases sensitivity of CA1 pyramidal cells to NMDA receptor-mediated synaptic input; further, sensitivity to NMDA receptor-mediated synaptic input is well correlated with dendritic spine density.

680 citations


Journal ArticleDOI
TL;DR: Long-term potentiation (LTP) in mGluR5 mutants was significantly reduced in the NMDA receptor (NMDAR)-dependent pathways such as the CA1 region and dentate gyrus of the hippocampus, whereas LTP remained intact in the mossy fiber synapses on the CA3 region, an NMDAR-independent pathway.
Abstract: Class I metabotropic glutamate receptors (mGluRs) have been postulated to play a role in synaptic plasticity. To test the involvement of one member of this class, we have recently generated mutant mice that express no mGluR5 but normal levels of other glutamate receptors. The CNS revealed normal development of gross anatomical features. To examine synaptic functions we measured evoked field EPSPs in the hippocampal slice. Measures of presynaptic function, such as paired pulse facilitation in mutant CA1 neurons, were normal. The response of mutant CA1 neurons to low concentrations of (1S,3R)-1-amino-cyclopentane-1,3-dicarboxylic acid (ACPD) was missing, which suggests that mGluR5 may be the primary high affinity ACPD receptor in these neurons. Long-term potentiation (LTP) in mGluR5 mutants was significantly reduced in the NMDA receptor (NMDAR)-dependent pathways such as the CA1 region and dentate gyrus of the hippocampus, whereas LTP remained intact in the mossy fiber synapses on the CA3 region, an NMDAR-independent pathway. Some of the difference in CA1 LTP could lie at the level of expression, because the reduction of LTP in the mutants was no longer observed 20 min after tetanus in the presence of 2-amino-5-phosphonopentanoate. We propose that mGluR5 plays a key regulatory role in NMDAR-dependent LTP. These mutant mice were also impaired in the acquisition and use of spatial information in both the Morris water maze and contextual information in the fear-conditioning test. This is consistent with the hypothesis that LTP in the CA1 region may underlie spatial learning and memory.

Journal ArticleDOI
01 Jun 1997-Neuron
TL;DR: Findings indicate that NMDAR-LTD and mGluR-L TD are mechanistically distinct forms of synaptic plasticity.

Journal ArticleDOI
01 Jun 1997-Neuron
TL;DR: It is shown that MAPK translocates into the nucleus of the presynaptic but not the postsynaptic cell during 5-HT-induced long-term facilitation, which appears to be specifically recruited and necessary for the long- term form of facilitation.

Journal ArticleDOI
01 Feb 1997-Neuron
TL;DR: It is found that a significant proportion of thalamocortical synapses are functionally silent and that these are converted to functional synapses during LTP, which suggests that the activity-dependent conversion of silent to functionalsynapses due to correlated pre- and postsynaptic activity may contribute to the early development and refinement of thalamus to cortex.

Journal ArticleDOI
29 May 1997-Nature
TL;DR: It is reported that the induction of stable homosynaptic LTD in the CA1 area of the hippocampus of awake adult rats is facilitated, rather than inhibited, by exposure to mild naturalistic stress.
Abstract: The induction of activity-dependent persistent increases in synaptic efficacy, such as long-term potentiation (LTP), is inhibited by behavioural stress. The question arises whether stress also affects the ability to induce persistent decreases in synaptic efficacy, such as long-term depression (LTD). We now report that the induction of stable homosynaptic LTD in the CA1 area of the hippocampus of awake adult rats is facilitated, rather than inhibited, by exposure to mild naturalistic stress. The same stress blocked the induction of LTP. The effects of such stress were short lasting: acclimatization to, or removal from, the conditions that facilitated LTD induction led to a rapid loss of the ability to elicit this form of plasticity. The time window in which LTD could be reliably elicited was prolonged by inducing anaesthesia immediately after the stress. These data reveal that even brief exposure to mild stress can produce a striking shift in the susceptibility to synaptic plasticity in the awake animal.

Journal ArticleDOI
TL;DR: It is reported that a late memory consolidation phase of an inhibitory avoidance learning is regulated by an hippocampal cAMP signaling pathway that is activated, at least in part, by D1/D5 receptors.
Abstract: cAMP/cAMP-dependent protein kinase (PKA) signaling pathway has been recently proposed to participate in both the late phase of long term potentiation in the hippocampus and in the late, protein synthesis-dependent phase of memory formation. Here we report that a late memory consolidation phase of an inhibitory avoidance learning is regulated by an hippocampal cAMP signaling pathway that is activated, at least in part, by D1/D5 receptors. Bilateral infusion of SKF 38393 (7.5 μg/side), a D1/D5 receptor agonist, into the CA1 region of the dorsal hippocampus, enhanced retention of a step-down inhibitory avoidance when given 3 or 6 h, but not immediately (0 h) or 9 h, after training. In contrast, full retrograde amnesia was obtained when SCH 23390 (0.5 μg/side), a D1/D5 receptor antagonist, was infused into the hippocampus 3 or 6 h after training. Intrahippocampal infusion of 8Br-cAMP (1.25 μg/side), or forskolin (0.5 μg/side), an activator of adenylyl cyclase, enhanced memory when given 3 or 6 h after training. KT5720 (0.5 μg/side), a specific inhibitor of PKA, hindered memory consolidation when given immediately or 3 or 6 h posttraining. Rats submitted to the avoidance task showed learning-specific increases in hippocampal 3H-SCH 23390 binding and in the endogenous levels of cAMP 3 and 6 h after training. In addition, PKA activity and P-CREB (phosphorylated form of cAMP responsive element binding protein) immunoreactivity increased in the hippocampus immediately and 3 and 6 h after training. Together, these findings suggest that the late phase of memory consolidation of an inhibitory avoidance is modulated cAMP/PKA signaling pathways in the hippocampus.

Journal ArticleDOI
01 Sep 1997-Neuron
TL;DR: Results indicate that both the temporal patterns of synaptic activity and the different temporal phases of synaptic enhancement are important in determining the neurotrophin dependence of plasticity in the hippocampus.

Journal ArticleDOI
TL;DR: Indirect evidence for Hebbian synaptic plasticity and a functional explanation for why place cells become directionally selective during route following are provided, namely, to preserve the synaptic asymmetry necessary to encode the sequence direction.
Abstract: Theories of sequence learning based on temporally asymmetric, Hebbian long-term potentiation predict that during route learning the spatial firing distributions of hippocampal neurons should enlarge in a direction opposite to the animal’s movement. On a route AB, increased synaptic drive from cells representing A would cause cells representing B to fire earlier and more robustly. These effects appeared within a few laps in rats running on closed tracks. This provides indirect evidence for Hebbian synaptic plasticity and a functional explanation for why place cells become directionally selective during route following, namely, to preserve the synaptic asymmetry necessary to encode the sequence direction.

Journal ArticleDOI
20 Nov 1997-Nature
TL;DR: It is reported that mice lacking Ras-GRF are impaired in the process of memory consolidation, as revealed by emotional conditioning tasks that require the function of the amygdala; learning and short-term memory are intact.
Abstract: Members of the Ras subfamily of small guanine-nucleotide-binding proteins are essential for controlling normal and malignant cell proliferation as well as cell differentiation. The neuronal-specific guanine-nucleotide-exchange factor, Ras-GRF/CDC25Mm, induces Ras signalling in response to Ca2+ influx and activation of G-protein-coupled receptors in vitro, suggesting that it plays a role in neurotransmission and plasticity in vivo. Here we report that mice lacking Ras-GRF are impaired in the process of memory consolidation, as revealed by emotional conditioning tasks that require the function of the amygdala; learning and short-term memory are intact. Electrophysiological measurements in the basolateral amygdala reveal that long-term plasticity is abnormal in mutant mice. In contrast, Ras-GRF mutants do not reveal major deficits in spatial learning tasks such as the Morris water maze, a test that requires hippocampal function. Consistent with apparently normal hippocampal functions, Ras-GRF mutants show normal NMDA (N-methyl-D-aspartate) receptor-dependent long-term potentiation in this structure. These results implicate Ras-GRF signalling via the Ras/MAP kinase pathway in synaptic events leading to formation of long-term memories.

Journal ArticleDOI
01 Mar 1997-Neuron
TL;DR: At crayfish neuromuscular junctions, several inhibitors of mitochondrial Ca2+ uptake and release blocked PTP and the persistence of presynaptic residual [Ca2+]i, while endoplasmic reticulum (ER) Ca2- pump inhibitors and release channel activators had no effects.

Journal ArticleDOI
TL;DR: The hypothesis that NO plays an important role in synaptic transmission is supported and some but not all previously contradictory results are explained.

Journal ArticleDOI
TL;DR: The aim of this review is to consider the relative roles of inhibitory and excitatory amino acid receptor-mediated events in the processes leading to pain transmission in the spinal cord, and how the relative balance between activity in these systems appears to determine the level of pain transmission.
Abstract: 1. The aim of this review is to consider the relative roles of inhibitory and excitatory amino acid receptor-mediated events in the processes leading to pain transmission in the spinal cord. 2. Emphasis will be on the roles of the inhibitory and excitatory amino acids, GABA and glutamate, and how the relative balance between activity in these systems appears to determine the level of pain transmission. 3. The N-methyl-D-aspartate (NMDA) receptor for glutamate has been implicated in the generation and maintenance of central (spinal) states of hypersensitivity. It has been shown that activation of this receptor underlies wind-up, whereby the level of transmission of noxious messages is potentiated. Antagonists at this receptor-channel complex prevent or block enhanced (hyperalgesic) pain states induced by tissue damage, inflammation, nerve damage and ischemia. 4. Information concerning amplification systems in the spinal cord, such as the NMDA receptor, is a step toward understanding why and how a painful response is not always matched to the stimulus. Such events have parallels with other plastic events such as long-term potentiation (LTP) in the hippocampus. 5. However, the roles of inhibitory transmitter systems can also change insofar as opioid, adenosine and GABA transmission in the spinal cord can vary in different pain states. 6. Changes in GABA systems have been well-documented and discussion will center on whether this has clinical implications. 7. In addition to behavioral and electrophysiological approaches to the pharmacology of pain the current status of the use of markers of early onset genes such as c-fos, as monitors of activity, will be discussed. 8. Hyperalgesia would appear to be balanced by inhibitions during inflammatory conditions but not in neuropathic states, pains due to nerve damage. In the latter case, events reminiscent of LTP may predominate, whereas they are held in check by inhibitions under conditions of inflammation.

Journal ArticleDOI
TL;DR: It is shown that a single burst of five pulses given on the positive phase of tail pinch-triggered theta rhythm reliably induced LTP in the stratum radiatum of the hippocampus of urethane-anesthetized rats.
Abstract: Long-term potentiation (LTP) of synaptic transmission induced by high-frequency stimulation (HFS) is considered to be a model for learning processes; however, standard HFS protocols consisting of long trains of HFS are very different from the patterns of spike firing in freely behaving animals. We have investigated the ability of brief bursts of HFS triggered at different phases of background theta rhythm to mimic more natural activity patterns. We show that a single burst of five pulses at 200 Hz given on the positive phase of tail pinch-triggered theta rhythm reliably induced LTP in the stratum radiatum of the hippocampus of urethane-anesthetized rats. Three of these bursts saturated LTP, and 10 bursts occluded the induction of LTP by long trains of HFS. Burst stimulation on the negative phase or at zero phase of theta did not induce LTP or long-term depression. In addition, stimulation with 10 bursts on the negative phase of theta reversed previously established LTP. The results show that the phase of sensory-evoked theta rhythm powerfully regulates the ability of brief HFS bursts to elicit either LTP or depotentiation of synaptic transmission. Furthermore, because complex spike activity of approximately five pulses on the positive phase of theta rhythm can be observed in freely moving rats, LTP induced by the present theta-triggered stimulation protocol might model putative synaptic plastic changes during learning more closely than standard HFS-induced LTP.

Journal ArticleDOI
07 Aug 1997-Nature
TL;DR: It is shown that, although a variety of short-term plasticities are normal, LTP at mossy fibre synapses is abolished in mice lacking the synaptic vesicle protein Rab3A.
Abstract: Repetitive activation of excitatory synapses in the central nervous system results in a long-lasting increase in synaptic transmission called long-term potentiation (LTP). It is generally believed that this synaptic plasticity may underlie certain forms of learning and memory. LTP at most synapses involves the activation of the NMDA (N-methyl-d-aspartate) subtype of glutamate receptor, but LTP at hippocampal mossy fibre synapses is independent of NMDA receptors and has a component that is induced and expressed presynaptically1. It appears to be triggered by a rise in presynaptic Ca2+(refs 2, 3), and requires the activation of protein kinase A4,5,6, which leads to an increased release of glutamate3,7,8,9,10. Agreat deal is known about the biochemical steps involved in the vesicular release of transmitter11,12,13, but none of these steps has been directly implicated in long-term synaptic plasticity. Here we show that, although a variety of short-term plasticities are normal, LTP at mossy fibre synapses is abolished in mice lacking the synaptic vesicle protein Rab3A.

Journal ArticleDOI
TL;DR: This hypothesis retains the idea that LTP subserves rapid one-trial memory, but abandons the notion that it serves any specific role in the geometric aspects of spatial learning.
Abstract: Allocentric spatial learning can sometimes occur in one trial. The incorporation of information into a spatial representation may, therefore, obey a one-trial correlational learning rule rather than a multi-trial error-correcting rule. It has been suggested that physiological implementation of such a rule could be mediated by N-methyl-D-aspartate (NMDA) receptor-dependent long-term potentiation (LTP) in the hippocampus, as its induction obeys a correlational type of synaptic learning rule. Support for this idea came originally from the finding that intracerebral infusion of the NMDA antagonist AP5 impairs spatial learning, but studies summarized in the first part of this paper have called it into question. First, rats previously given experience of spatial learning in a watermaze can learn a new spatial reference memory task at a normal rate despite an appreciable NMDA receptor blockade. Second, the classical phenomenon of 'blocking' occurs in spatial learning. The latter finding implies that spatial learning can also be sensitive to an animal's expectations about reward and so depend on more than the detection of simple spatial correlations. In this paper a new hypothesis is proposed about the function of hippocampal LTP. This hypothesis retains the idea that LTP subserves rapid one-trial memory, but abandons the notion that it serves any specific role in the geometric aspects of spatial learning. It is suggested that LTP participates in the automatic recording of attended experience': a subsystem of episodic memory in which events are temporarily remembered in association with the contexts in which they occur. An automatic correlational form of synaptic plasticity is ideally suited to the online registration of context event associations. In support, it is reported that the ability of rats to remember the most recent place they have visited in a familiar environment is exquisitely sensitive to AP5 in a delay-dependent manner. Moreover, new studies of the lasting persistence of NMDA-dependent LTP, known to require protein synthesis, point to intracellular mechanisms that enable transient synaptic changes to be stabilized if they occur in close temporal proximity to important events. This new property of hippocampal LTP is a desirable characteristic of an event memory system.

Journal ArticleDOI
29 May 1997-Nature
TL;DR: Transgenic mice expressing the amyloidogenic carboxy-terminal 104 amino acids of APP develop, with ageing, extracellular β-amyloid immunoreactivity, increased gliosis and microglial reactivity, as well as cell loss hi the CA1 region of the hippocampus, indicating that alterations in the processing of APP may have considerable physiological effects on synaptic plasticity.
Abstract: Proteolytic processing of amyloid precursor protein (APP) through an endosomal/lysosomal pathway generates carboxy-terminal polypeptides that contain an intact beta-amyloid domain. Cleavage by as-yet unidentified proteases releases the beta-amyloid peptide in soluble form. In Alzheimer's disease, aggregated beta-amyloid is deposited in extracellular neuritic plaques. Although most of the molecular mechanisms involving beta-amyloid and APP in the aetiology of Alzheimer's disease are still unclear, changes in APP metabolism may be important in the pathogenesis of the disease. Here we show that transgenic mice expressing the amyloidogenic carboxy-terminal 104 amino acids of APP develop, with ageing, extracellular beta-amyloid immunoreactivity, increased gliosis and microglial reactivity, as well as cell loss in the CA1 region of the hippocampus. Adult transgenic mice demonstrate spatial-learning deficits in the Morris water maze and in maintenance of long-term potentiation (LTP). Our results indicate that alterations in the processing of APP may have considerable physiological effects on synaptic plasticity.

Journal ArticleDOI
TL;DR: It is proposed that LTP may serve as a neural equivalent to an arousal or attention device in the brain that may facilitate the induction of memories at distant synapses and increase in a nonspecific way the effective salience of discrete external stimuli.
Abstract: Long-term potentiation (LTP) is operationally defined as a long-lasting increase in synaptic efficacy following high-frequency stimulation of afferent fibers Since the first full description of the phenomenon in 1973, exploration of the mechanisms underlying LTP induction has been one of the most active areas of research in neuroscience Of principal interest to those who study LTP, particularly in the mammalian hippocampus, is its presumed role in the establishment of stable memories, a role consistent with "Hebbian" descriptions of memory formation Other characteristics of LTP, including its rapid induction, persistence, and correlation with natural brain rhythms, provide circumstantial support for this connection to memory storage Nonetheless, there is little empirical evidence that directly links LTP to the storage of memories In this target article we review a range of cellular and behavioral characteristics of LTP and evaluate whether they are consistent with the purported role of hippocampal LTP in memory formation We suggest that much of the present focus on LTP reflects a preconception that LTP is a learning mechanism, although the empirical evidence often suggests that LTP is unsuitable for such a role As an alternative to serving as a memory storage device, we propose that LTP may serve as a neural equivalent to an arousal or attention device in the brain Accordingly, LTP may increase in a nonspecific way the effective salience of discrete external stimuli and may thereby facilitate the induction of memories at distant synapses Other hypotheses regarding the functional utility of this intensely studied mechanism are conceivable; the intent of this target article is not to promote a single hypothesis but rather to stimulate discussion about the neural mechanisms underlying memory storage and to appraise whether LTP can be considered a viable candidate for such a mechanism

Journal ArticleDOI
TL;DR: It is shown that calcium-independent CaMKII specifically binds to isolated postsynaptic densities (PSDs), leading to enhanced phosphorylation of many PSD proteins including the α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA)-type glutamate receptor.

Journal ArticleDOI
TL;DR: Characterization of this pathway has provided new insights into the role of NO in brain physiology and disease.

Journal ArticleDOI
TL;DR: This review is a critical appraisal of the widespread assumption that high extracellular glutamate, resulting from enhanced pre-synaptic release superimposed on deficient uptake and/or cytosolic efflux, is the key to excessive glutamate-mediated excitation in neurological disorders.