scispace - formally typeset
Search or ask a question

Showing papers on "Motor neuron published in 1997"


Journal ArticleDOI
01 Feb 1997-Neuron
TL;DR: It is reported here that even low levels of another mutant, G85R, cause motor neuron disease characterized by an extremely rapid clinical progression, without changes in SOD1 activity.

1,343 citations


Journal ArticleDOI
16 Oct 1997-Nature
TL;DR: It is shown that sensory and motor neurons require factors for their survival that are provided by developing Schwann cells, and that ErbB3 functions in a cell-autonomous way during the development of SchwANN cells, but not in the survival of sensory or motor neurons.
Abstract: Neuregulins and their specific receptors, members of the ErbB family of tyrosine kinases, have been implicated in the control of growth and development of Schwann cells, specialized cells that wrap around nerve axons to provide electrical insulation. Here we use gene targeting to generate mice that lack ErbB3, a high-affinity neuregulin receptor. Homozygous erbB3 mutant embryos lack Schwann-cell precursors and Schwann cells that accompany peripheral axons of sensory and motor neurons. The initial development of motor neurons and sensory neurons of dorsal root ganglia occurs as it should, but at later stages most motor neurons (79%) and sensory neurons in dorsal root ganglia (82%) undergo cell death in erbB3 mutant embryos. Degeneration of the peripheral nervous system in erbB3 mutant pups is thus much more severe than the cell death in mice that lack neurotrophins or neurotrophin receptors. We also show that ErbB3 functions in a cell-autonomous way during the development of Schwann cells, but not in the survival of sensory or motor neurons. Our results indicate that sensory and motor neurons require factors for their survival that are provided by developing Schwann cells.

728 citations


Journal ArticleDOI
26 Dec 1997-Cell
TL;DR: By perfusing serotonin onto the synapses made onto one motor neuron, it is found that a single axonal branch can undergo long-term branch-specific facilitation, which depends on CREB-mediated transcription and involves the growth of new synaptic connections exclusively at the treated branch.

719 citations


Journal ArticleDOI
TL;DR: Investigation of fibroblasts from SMA patients with various clinical severities of SMA showed a moderate reduction in the amount of SMN protein, particularly in type I (most severe) patients, which is consistent with features of this motor neuron disease.
Abstract: The 38 kDa survival motor neuron (SMN) protein is encoded by two ubiquitously expressed genes: telomeric SMN (SMN(T)) and centromeric SMN (SMN(C)). Mutations in SMN(T), but not SMN(C), cause proximal spinal muscular atrophy (SMA), an autosomal recessive disorder that results in loss of motor neurons. SMN is found in the cytoplasm and nucleus. The nuclear form is located in structures termed gems. Using a panel of anti-SMN antibodies, we demonstrate that the SMN protein is expressed from both the SMN(T) and SMN(C) genes. Western blot analysis of fibroblasts from SMA patients with various clinical severities of SMA showed a moderate reduction in the amount of SMN protein, particularly in type I (most severe) patients. Immunocytochemical analysis of SMA patient fibroblasts indicates a significant reduction in the number of gems in type I SMA patients and a correlation of the number of gems with clinical severity. This correlation to phenotype using primary fibroblasts may serve as a useful diagnostic tool in an easily accessible tissue. SMN is expressed at high levels in brain, kidney and liver, moderate levels in skeletal and cardiac muscle, and low levels in fibroblasts and lymphocytes. In SMA patients, the SMN level was moderately reduced in muscle and lymphoblasts. In contrast, SMN was expressed at high levels in spinal cord from normals and non-SMA disease controls, but was reduced 100-fold in spinal cord from type I patients. The marked reduction of SMN in type I SMA spinal cords is consistent with the features of this motor neuron disease. We suggest that disruption of SMN(T) in type I patients results in loss of SMN from motor neurons, resulting in the degeneration of these neurons.

684 citations


Journal ArticleDOI
TL;DR: Mice with homozygous SMN disruption display massive cell death during early embryonic development, indicating that the SMN gene product is necessary for cellular survival and function.
Abstract: Proximal spinal muscular atrophy is an autosomal recessive human disease of spinal motor neurons leading to muscular weakness with onset predominantly in infancy and childhood. With an estimated heterozygote frequency of 1/40 it is the most common monogenic disorder lethal to infants; milder forms represent the second most common pediatric neuromuscular disorder. Two candidate genes—survival motor neuron (SMN) and neuronal apoptosis inhibitory protein have been identified on chromosome 5q13 by positional cloning. However, the functional impact of these genes and the mechanism leading to a degeneration of motor neurons remain to be defined. To analyze the role of the SMN gene product in vivo we generated SMN-deficient mice. In contrast to the human genome, which contains two copies, the mouse genome contains only one SMN gene. Mice with homozygous SMN disruption display massive cell death during early embryonic development, indicating that the SMN gene product is necessary for cellular survival and function.

646 citations


Journal ArticleDOI
25 Jul 1997-Science
TL;DR: Overexpression of the proto-oncogene bcl-2 delayed onset of motor neuron disease and prolonged survival in transgenic mice expressing the FALS-linked mutation in which glycine is substituted by alanine at position 93, but did not alter the duration of the disease.
Abstract: Mutations in the gene encoding copper/zinc superoxide dismutase enzyme produce an animal model of familial amyotrophic lateral sclerosis (FALS), a fatal disorder characterized by paralysis Overexpression of the proto-oncogene bcl-2 delayed onset of motor neuron disease and prolonged survival in transgenic mice expressing the FALS-linked mutation in which glycine is substituted by alanine at position 93 It did not, however, alter the duration of the disease Overexpression of bcl-2 also attenuated the magnitude of spinal cord motor neuron degeneration in the FALS-transgenic mice

496 citations


Journal ArticleDOI
TL;DR: Evidence is provided that chronic activity patterns, such as strength training, limb immobilization, and aging, produce marked adaptations in both the muscular and nervous systems, and there remain substantial gaps in knowledge, particularly regarding the symmetry of adaptations with increased and decreased chronic physical activity.

375 citations


Journal ArticleDOI
TL;DR: Aggregation of SOD-1 may contribute significantly to the death of motor neuron expressing mutations associated with FALS-1 and the mechanisms leading to aggregation may pertain to the specific vulnerability of motor neurons in this disease.
Abstract: Mutations in the Cu/Zn-superoxide dismutase (SOD-1) gene underlie some familial cases of amyotrophic lateral sclerosis (FALS), a neurodegenerative disorder characterized by loss of cortical, brainstem, and spinal motor neurons. To investigate the mechanisms responsible for the toxicity of mutant enzyme, SOD-1 cDNAs bearing mutations found in FALS patients (mSOD) were expressed in cultured spinal motor neurons, dorsal root ganglion (DRG) and hippocampal neurons. Many features of motor neuron disease seen in humans with FALS and in transgenic mouse models were reproduced, including preferential susceptibility of motor neurons to toxicity of mSOD. Abnormal cytoplasmic aggregation of mSOD protein was observed in mSOD-expressing motor neurons, but never in neurons expressing SODwt enzyme, and was followed by evidence of apoptotic cell death. Such aggregates were not observed in nonvulnerable neuronal populations expressing mSOD (DRG or hippocampal neurons). Aggregation of SOD-1 may contribute significantly to the death of motor neurons expressing mutations associated with FALS-1 and the mechanisms leading to aggregation may pertain to the specific vulnerability of motor neurons in this disease.

359 citations


Journal ArticleDOI
TL;DR: This is the first demonstration of impaired axonal transport in a mouse model of ALS, and it is inferred that similar impairments occur in authentic ALS.
Abstract: Mice engineered to express a transgene encoding a human Cu/Zn superoxide dismutase (SOD1) with a Gly93 --> Ala (G93A) mutation found in patients who succumb to familial amyotrophic lateral sclerosis (FALS) develop a rapidly progressive and fatal motor neuron disease (MND) similar to amyotrophic lateral sclerosis (ALS). Hallmark ALS lesions such as fragmentation of the Golgi apparatus and neurofilament (NF)-rich inclusions in surviving spinal cord motor neurons as well as the selective degeneration of this population of neurons were also observed in these animals. Since the mechanism whereby mutations in SOD1 lead to MND remains enigmatic, we asked whether NF inclusions in motor neurons compromise axonal transport during the onset and progression of MND in a line of mice that contained approximately 30% fewer copies of the transgene than the original G93A (Gurney et al., 1994). The onset of MND was delayed in these mice compared to the original G93A mice, but they developed the same neuropathologic abnormalities seen in the original G93A mice, albeit at a later time point with fewer vacuoles and more NF inclusions. Quantitative Western blot analyses showed a progressive decrease in the level of NF proteins in the L5 ventral roots of G93A mice and a concomitant reduction in axon caliber with the onset of motor weakness. By approximately 200 d, both fast and slow axonal transports were impaired in the ventral roots of these mice coincidental with the appearance of NF inclusions and vacuoles in the axons and perikarya of vulnerable motor neurons. This is the first demonstration of impaired axonal transport in a mouse model of ALS, and we infer that similar impairments occur in authentic ALS. Based on the temporal correlation of these impairments with the onset of motor weakness and the appearance of NF inclusions and vacuoles in vulnerable motor neurons, the latter lesions may be the proximal cause of motor neuron dysfunction and degeneration in the G93A mice and in FALS patients with SOD1 mutations.

308 citations


Journal ArticleDOI
TL;DR: The results suggest that the gain‐of‐function of at least one mutant SOD1 associated with FALS involves increased protein nitration and oxidative damage, which may play a role in neuronal degeneration.
Abstract: Mutations in copper/zinc superoxide dismutase (SOD1) cause a subset of cases of autosomal dominant familial amyotrophic lateral sclerosis (FALS). Transgenic mice that express these point mutations develop progressive paralysis and motor neuron loss thought to be caused by a gain-of-function of the enzyme. The gain-of-function may be an enhanced ability of the mutant SOD1 to generate .OH radicals or to facilitate peroxynitrite-mediated nitration of proteins. We found significant increases in concentrations of 3-nitrotyrosine, a marker of peroxynitrite-mediated nitration, in upper and lower spinal cord and in cerebral cortex of transgenic mice with the FALS-associated G93A mutation. Malondialdehyde, a marker of lipid peroxidation, was increased in cerebral cortex. 3-Nitrotyrosine-, heme oxygenase-1-, and malondialdehyde-modified protein immunoreactivities were increased throughout SOD1 transgenic mice spinal cord but particularly within motor neurons. These results suggest that the gain-of-function of at least one mutant SOD1 associated with FALS involves increased protein nitration and oxidative damage, which may play a role in neuronal degeneration.

261 citations


Journal ArticleDOI
01 Feb 1997-Neuron
TL;DR: Differential responsiveness to netrin-1 and semaphorin D could contribute to the generation of dorsal and ventral motor axon pathways during development.

Journal ArticleDOI
TL;DR: Results strongly suggest that Pax-6 is involved in the specification of subtypes of hindbrain motor neurons, presumably through the regulation of Islet-2 and Wnt-7b expression.
Abstract: Pax-6 is a member of the vertebrate Pax gene family, which is structurally related to the Drosophila pair-rule gene, paired. In mammals, Pax-6 is expressed in several discrete domains of the developing CNS and has been implicated in neural development, although its precise role remains elusive. We found a novel Small eye rat strain (rSey2) with phenotypes similar to mouse and rat Small eye. Analyses of the Pax-6 gene revealed one base (C) insertion in an exon encoding the region downstream of the paired box of the Pax-6 gene, resulting in generation of truncated protein due to the frame shift. To explore the roles of Pax-6 in neural development, we searched for abnormalities in the nervous system in rSey2 homozygous embryos. rSey2/rSey2 exhibited abnormal development of motor neurons in the hindbrain. The Islet-1-positive motor neurons were generated just ventral to the Pax-6-expressing domain both in the wild-type and mutant embryos. However, two somatic motor (SM) nerves, the abducent and hypoglossal nerves, were missing in homozygous embryos. By retrograde and anterograde labeling, we found no SM-type axonogenesis (ventrally growing) in the mutant postotic hindbrain, though branchiomotor and visceral motor (BM/VM)-type axons (dorsally growing) were observed within the neural tube. To discover whether the identity of these motor neuron subtypes was changed in the mutant, we examined expression of LIM homeobox genes, Islet-1, Islet-2 and Lim-3. At the postotic levels of the hindbrain, SM neurons expressed all the three LIM genes, whereas BM/VM-type neurons were marked by Islet-1 only. In the Pax-6 mutant hindbrain, Islet-2 expression was specifically missing, which resulted in the loss of the cells harboring the postotic hindbrain SM-type LIM code (Islet-1 + Islet-2 + Lim-3). Furthermore, we found that expression of Wnt-7b, which overlapped with Pax-6 in the ventrolateral domain of the neural tube, was also specifically missing in the mutant hindbrain, while it remained intact in the dorsal non-overlapping domain. These results strongly suggest that Pax-6 is involved in the specification of subtypes of hindbrain motor neurons, presumably through the regulation of Islet-2 and Wnt-7b expression.

Journal ArticleDOI
TL;DR: It is demonstrated here that adenovirus-mediated gene transfer of neurotrophin-3 (NT-3) can produce substantial therapeutic effects in the mouse mutant pmn (progressive motor neuronopathy) and offers new prospects for the treatment of motor neuron diseases.
Abstract: Motor neuron diseases such as amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy cause progressive paralysis, often leading to premature death. Neurotrophic factors have been suggested as therapeutic agents for motor neuron diseases, but their clinical use as injected recombinant protein was limited by toxicity and/or poor bioavailability. We demonstrate here that adenovirus-mediated gene transfer of neurotrophin-3 (NT-3) can produce substantial therapeutic effects in the mouse mutant pmn (progressive motor neuronopathy). After intramuscular injection of the NT-3 adenoviral vector, pmn mice showed a 50% increase in life span, reduced loss of motor axons and improved neuromuscular function as assessed by electromyography. These results were further improved by coinjecting an adenoviral vector coding for ciliary neurotrophic factor. Therefore, adenovirus-mediated gene transfer of neurotrophic factors offers new prospects for the treatment of motor neuron diseases.

Journal ArticleDOI
Charles Capaday1
TL;DR: In this paper the influence of the background level of motor activity on input output properties of the neural pathway investigated and the operating point on the input-output curves at which the experimental variable is measured will be emphasized.

Journal ArticleDOI
TL;DR: Biochemical analyses suggest that the p75NTR intracellular domain may act as a constitutive activator of signaling cascades that regulate apoptosis in both peripheral and central neurons.
Abstract: We have asked whether p75(NTR) may play a role in neuronal apoptosis by producing transgenic mice that express the p75(NTR) intracellular domain within peripheral and central neurons. These animals showed profound reductions in numbers of sympathetic and peripheral sensory neurons as well as cell loss in the neocortex, where there is normally little or no p75(NTR) expression. Developmental loss of facial motor neurons was not observed, but induced expression of the p75(NTR) intracellular domain within adult animals led to increased motor neuron death after axotomy. Biochemical analyses suggest that these effects were not attributable to a p75(NTR)-dependent reduction in trk activation but instead indicate that the p75(NTR) intracellular domain may act as a constitutive activator of signaling cascades that regulate apoptosis in both peripheral and central neurons.

Journal ArticleDOI
01 May 1997-Brain
TL;DR: The different sites of activation of corticospinal neurons by TMS and TES, as well as the different distribution of D and I responses that they evoke, may both contribute to the differences in the onset latencies of the EMG responses evoked by these methods in human subjects.
Abstract: To illuminate the action of non-invasive stimuli on the human cerebral cortex, responses of corticospinal axons and of plantar alpha-motor neurons following transcranial magnetic (TMS) and electrical stimulation (TES) were recorded in the lumbosacral cord in the anaesthetized macaque monkey. A round coil was used for TMS, and the anode was located at the vertex for TES. The responses of 175 identified corticospinal axons (conduction velocities of 24-95 m/s) were recorded from the lateral corticospinal tract at the T12-L3 spinal level. A single magnetic or electrical stimulus could evoke an early spike corresponding to the direct (D) wave in surface recorded volleys and was termed a D response. In the same axon, up to four further spikes, termed indirect (I) responses, could also be evoked. At a given intensity of stimulation, D responses had clear thresholds and fixed latencies, whereas I responses were labile in both respects. For TMS and TES, the thresholds of both D and I responses were inversely correlated with axonal conduction velocity. For TMS, fast conducting axons (> 75 m/s) had lower thresholds for D responses, while more slowly conducting axons (< 55 m/s) had lower thresholds for I responses. Very few of the axons with a conduction velocity of < 40 m/s (three out of 23) gave a D response to TMS. For TES, the majority of axons had lower thresholds for D responses or a similar threshold for both D and I responses. At threshold, the latencies of D responses evoked by TMS and TES were consistent with activation within the cortex, while TES also excited some corticospinal axons deep to the cortex. At 2.5 times threshold for the D response, TMS still excited axons mostly within the cortex, but with TES the site of activation shifted by as much as 65 mm below the cortex (mode 20 mm). Intracellular responses were recorded in 23 plantar alpha motor neurons supplying intrinsic muscles of the foot. All showed monosynaptic excitatory post-synaptic potentials (EPSPs) to both TMS and TES with no significant differences in the rise times of the evoked EPSPs. At threshold for a surface corticospinal volley, the average EPSP to TES began 0.5 ms earlier than that to TMS, and 1.0 ms earlier at 2.5 times this threshold. The different sites of activation of corticospinal neurons by TMS and TES, as well as the different distribution of D and I responses that they evoke, may both contribute to the differences in the onset latencies of the EMG responses evoked by these methods in human subjects.

Journal ArticleDOI
TL;DR: BDNF was demonstrated to possess a wide variety of biological effects on survival, soma size, cholinergic enzymes, and axonal outgrowth of adult motor neurons, providing a rationale for BDNF treatment in motor neuron diseases such as spinal cord injury and amyotrophic lateral sclerosis.

Journal ArticleDOI
11 Dec 1997-Nature
TL;DR: The identification, using a technique known as messenger RNA differential display, of an extracellular signalling molecule, previously described as the pancreatic secreted protein Reg-2, that is expressed solely in regenerating and developing rat motor and sensory neurons is reported here.
Abstract: Motor neurons are the only adult mammalian neurons of the central nervous system to regenerate following injury. This ability is dependent on the environment of the peripheral nerve and an intrinsic capacity of motor neurons for regrowth. We report here the identification, using a technique known as messenger RNA differential display, of an extracellular signalling molecule, previously described as the pancreatic secreted protein Reg-2, that is expressed solely in regenerating and developing rat motor and sensory neurons. Axon-stimulated Schwann cell proliferation is necessary for successful regeneration, and we show that Reg-2 is a potent Schwann cell mitogen in vitro. In vivo, Reg-2 protein is transported along regrowing axons and inhibition of Reg-2 signalling significantly retards the regeneration of Reg-2-containing axons. During development, Reg-2 production by motor and sensory neurons is regulated by contact with peripheral targets. Strong candidates for peripheral factors regulating Reg-2 production are cytokines of the LIF/CNTF family, because Reg-2 is not expressed in developing motor or sensory neurons of mice carrying a targeted disruption of the LIF receptor gene, a common component of the receptor complexes for all of the LIF/CNTF family.

Journal ArticleDOI
TL;DR: A therapeutic potential for brain-derived neurotrophic factor is found in the early treatment of traumatic injuries to spinal nerves and roots in adult rat spinal motoneurons.

Journal ArticleDOI
TL;DR: Techniques suitable for tonic exposure to both nerve- and muscle-derived neurotrophic factors may have implications for the design of future therapeutic strategies against human motor neuron disease.
Abstract: The neurotrophic factors ciliary neurotrophic factor and brain-derived neurotrophic factor can prevent motor neuron cell death during development and after nerve lesion in neonatal rodents. However, local and systemic application of these factors to newborn rats with damaged motor nerves rescues motor neurons only transiently during the first two weeks after axotomy. In order to test the effect of continuous delivery of these factors, the effect of localized injection of CNTF- or BDNF-transducing recombinant adenoviruses into the lesioned nerves was investigated. Under such conditions, survival of axotomized motor neurons is maintained for at least 5 weeks. This way of delivery corresponds to the physiological situation in adult rodents, under which endogenous CNTF is present in the cytosol of Schwann cells and BDNF expression is upregulated after nerve lesion, making these factors available to the damaged motor neurons. Recent results show that overexpression of muscle-derived neurotrophin-3 prevents degeneration of axons and motor endplates, but has only little effect on the number of motor neuron cell bodies in a murine animal model of motor neuron disease. Therefore, techniques suitable for tonic exposure to both nerve- and muscle-derived neurotrophic factors may have implications for the design of future therapeutic strategies against human motor neuron disease.

Journal ArticleDOI
TL;DR: The view that astrocytes are directly involved in the pathologic process of ALS, and might explain the selective vulnerability of motor neurons by their relative lack of antioxidant defenses, is supported.
Abstract: There is increasing evidence that oxidative damage plays a major role in amyotrophic lateral sclerosis (ALS), but how it contributes to motor neuron degeneration and astrocytic gliosis, two pathologic hallmarks of the disease, is unknown. A few studies have suggested that ALS motor neurons die via apoptosis and show upregulation of c-jun, an immediate early gene that is necessary for neuronal apoptosis. In order to elucidate the mechanisms of cell damage induced by oxidant stress, we have studied in ALS and control spinal cord the immunohistochemical expression of c-Jun, of JNK/SAPK, a kinase that activates c-Jun following various types of stress, and of NF-kappa B, a transcription factor that is induced by oxidant stress and has prominent neuroprotective functions. An in situ end-labeling assay was performed for detecting apoptotic cells. We show that (a) the JNK/SAPK-c-Jun pathway is dramatically overexpressed in ALS spinal cord; (b) the strongest activation occurs in astrocytes, while motor neurons show unusually low expression of the pathway; (c) increased JNK/SAPK expression in glial cells is accompanied by NF-kappa B activation, indicating the presence of a protective response to oxidant sress, which is deficient in motor neurons; (d) activation of JNK/SAPK, c-Jun and NF-kappa B is unrelated to apoptotic cell death. These results support the view that astrocytes are directly involved in the pathologic process of ALS, and might explain the selective vulnerability of motor neurons by their relative lack of antioxidant defenses.

Journal ArticleDOI
TL;DR: Early in ALS, at a time when hand muscle function is normal, corticomotor threshold is reduced and it is suggested that this may be a manifestation of abnormal excitability of cortical or spinal motoneurons to neurotransmitters, whose action will ultimately lead to cell death.
Abstract: The pathogenesis of idiopathic amyotrophic lateral sclerosis (ALS) remains unknown, but accumulating evidence suggests a neuroexcitotoxic mechanism may have some credence. Glutamate-induced hyperexcitability of cortical or spinal motoneurons may be expected to manifest itself as a reduced threshold for activation of these structures. We have measured corticomotor threshold to the first dorsal interosseous (FDI) muscles of 48 patients with sporadic ALS using magnetic brain stimulation and have correlated the findings with physical signs of upper and/or lower motor neuron degeneration. We find that if FDI in patients with ALS shows no weakness, wasting, or signs of an upper motor neuron lesion, mean corticomotor threshold is significantly lower than in 102 healthy control FDI muscles (P = 0.02). In contrast, FDI muscles showing signs of lower motor neuron degeneration only or mixed upper and lower motor neuron signs are associated with a raised corticomotor threshold (P = 0.008, P < 0.001, respectively). We conclude that early in ALS, at a time when hand muscle function is normal, corticomotor threshold is reduced and suggest that this may be a manifestation of abnormal excitability of cortical or spinal motoneurons to neurotransmitters, whose action will ultimately lead to cell death.

Journal ArticleDOI
01 Jul 1997-Brain
TL;DR: In this paper, a cross-correlation analysis of multi-unit EMG recorded during simultaneous voluntary sustained activation of homologous left and right pairs of distal upper limb muscles was performed.
Abstract: Possible mechanisms underlying the pathological mirror movements that are seen in the majority of patients with X-linked Kallmann's syndrome have been investigated using neurophysiological techniques. An EMG was recorded from the first dorsal interosseous muscle (1DI) during voluntary self-paced abduction of one indexed finger; EMG activity could also be recorded simultaneously from the contralateral 1DI. There was no significant difference between the time of onset of the bursts of voluntary and involuntary mirroring EMG. Focal magnetic stimulation of the hand area of the motor cortex revealed the presence of fast conducting bilateral corticospinal projections from each motor cortex in all subjects. However, both inter- and intra-subject differences exist when considering the ratio of ipsilaterally to contralaterally projecting axons. Cross-correlation analysis of multi-unit EMGs recorded during simultaneous voluntary sustained activation of homologous left and right pairs of distal upper limb muscles was performed. A short duration central peak was seen in the cross-correlograms indicating the presence of a common drive to left and right homologous motor neuron pools. This common drive may result from the synchronous activation of intermingled ipsilaterally and contralaterally projecting corticospinal neurons in the motor cortex. Cutaneomuscular reflexes were recorded from the 1DI following stimulation of the digital nerves of the index finger. Typically each reflex comprises spinal and longer latency trans-cortical components. In these subjects, the long latency components of the reflex response could, in addition, be recorded from the 1DI of the non-stimulated side. We conclude that these subject have a novel ipsilateral at least in part, for the pathological mirroring.

Journal ArticleDOI
TL;DR: It is concluded that r3 and r5 and their derivatives are completely eliminated in Krox-20(-/-) embryos while overall hindbrain segmentation is maintained and that the disappearance of these territories has important consequences for even-numbered rhombomeres as well.
Abstract: The vertebrate hindbrain is transiently segmented during its early development with the formation of reiterated bulges, the rhombomeres (r). The Krox-20 gene, which encodes a zinc finger transcription factor, has been shown previously to be implicated in the maintenance of r3 and r5 (Schneider-Maunoury, S., Topilko, P., Seitanidou, T., Levi, G., Cohen-Tannoudji, M., Pournin, S., Babinet, C. and Charnay, P. (1993) Cell 75, 1199–1214; Swiatek, P. J. and Gridley, T. (1993) Genes Dev. 7, 2071–2084. However, it was not clear from these analyses how extensive the deletion of r3 and r5 was and whether the overall segmentation and internal architecture of the hindbrain was affected. We have now reinvestigated these issues by analysis of rhombomere boundaries, using both morphological and molecular markers, and of the fate of specific motor neuron populations, using retrograde and anterograde carbocyanine dye tracing. We conclude that r3 and r5 and their derivatives are completely eliminated in Krox-20(−/−) embryos while overall hindbrain segmentation is maintained. In addition, we show that the disappearance of these territories has important consequences for even-numbered rhombomeres as well, in particular on axonal navigation: (i) a population of r6 motoneurons, presumably normally fated to join the glossopharyngeal nerve, has its axons misrouted toward the facial exit point in r4; (ii) the trigeminal motor axons are also misrouted, presumably because of the proximity of the trigeminal and facial exit points. They fasciculate with facial axons outside the neural tube and enter the second branchial arch instead of the first arch. This navigational error could explain the disappearance, at around 17.5 dpc, of the trigeminal motor nucleus in Krox-20(−/−) embryos by inadequate supply of essential, possibly arch-specific survival factors.

Journal ArticleDOI
TL;DR: The results support the relevance of SMN for the motor neuron function and the pathogenetic role of the SMN gene in the neuronal degeneration associated with SMA.
Abstract: The survival motor neuron (SMN) gene is the putative disease gene for human spinal muscular atrophy (SMA), an autosomal recessive disorder characterized by progressive degeneration of lower motor neurons. Two copies of the gene, centromeric and telomeric, are present in the same 5q13 chromosomal region in humans. However, only the telomeric gene is affected in SMA. The SMN gene(s) encode(s) a novel protein of unknown function. To gain insights into the role of SMN in neurons, we have identified the SMN gene ortholog in the rat, and investigated SMN expression in the CNS of rat, monkey and humans by immunocytochemistry and in situ hybridization experiments. Antibodies against the SMN amino-terminus specifically recognized a single protein identical to the in vitro translation products of human and rat SMN cDNAs. The SMN gene transcript and product were widely but unevenly expressed throughout cerebral and spinal cord areas. The SMN protein was localized mainly in the cytoplasm of specific neuronal systems, and it was particularly expressed in lower motor neurons of newborn and adult animals. Likewise, a strong hybridization signal was detected in lamina IX of the spinal ventral horn. These results support the relevance of SMN for the motor neuron function and the pathogenetic role of the SMN gene in the neuronal degeneration associated with SMA.

Journal ArticleDOI
TL;DR: Two proteins, lysyl-tRNA synthetase and translocon-associated protein delta, interact with mutant forms of S OD1 but not with wild-type SOD1, and are expressed in ventral cord, lending support to the relevance of this interaction to motor neuron disease.
Abstract: A subset of familial and sporadic amyotrophic lateral sclerosis (ALS-a fatal disorder characterised by progressive motor neuron degeneration) cases are due to mutations in the gene encoding Cu,Zn superoxide dismutase (SOD1). Two mutations which have been successfully used to generate transgenic mice that develop an ALS-like syndrome are glycine 85 to arginine (G85R) and glycine 93 to alanine (G93A) with the mutant SOD1 allele overexpressed in a normal mouse genetic background. No ALS-like phenotype is observed in mice overexpressing wild-type SOD1 or mice without any SOD1 activity. These dominant mutations, which do not necessarily decrease SOD1 activity, may confer a gain of function that is selectively lethal to motor neurons. The yeast interaction trap system allowed us to determine whether these mutations in SOD1 caused novel protein interactions not observed with wild-type SOD1 and which might participate in the generation of the ALS phenotype. Two proteins, lysyl-tRNA synthetase and translocon-associated protein delta, interact with mutant forms of SOD1 but not with wild-type SOD1. The specificity of the interactions was confirmed by the coimmunoprecipitation of mutant SOD1 and the expressed proteins. These proteins are expressed in ventral cord, lending support to the relevance of this interaction to motor neuron disease.

Journal ArticleDOI
01 Dec 1997-Brain
TL;DR: It is concluded that physiological action of the antibody alone is insufficient to explain clinically observed conduction block in human diseases.
Abstract: Anti-ganglioside (anti-GM1) antibodies have been implicated in the pathogenesis of Guillain-Barre syndrome, multifocal motor neuropathy and motor neuron diseases. It has been held that they may interfere with saltatory conduction by blocking sodium channels. We tested this hypothesis by analysing action potentials from 140 single nerve fibres in 22 rat ventral roots using external longitudinal current measurement. High-titre anti-GM1 sera from Guillain-Barre syndrome or multifocal motor neuropathy patients, or anti-GM1 rabbit sera were applied to the rat ventral root, where saltatory conduction in single motor fibres was serially observed for 4-12 h (mean 8.2 h). For control experiments, we also tested anti-galactocerebroside (anti-GalC) sera, which causes acute demyelinative conduction block, and tetrodotoxin (TTX), a sodium channel blocker. Conduction block was found in 82% of the fibres treated with anti-GalC sera and 100% treated with TTX, but only in 2% (one out of 44) treated with the patients' sera and 5% (two out of 38) treated with rabbit anti-GM1 sera. All the nodes blocked by anti-GM1 sera revealed intense passive outward membrane current, in the internode just beyond the last active node. This pattern of current flow was similar to that in fibres blocked by demyelination with anti-GalC sera, and quite different from that seen in fibres blocked by reducing sodium currents with TTX. Our findings suggest that anti-GM1 sera neither mediate conduction block nor block sodium channels on their own. We conclude that physiological action of the antibody alone is insufficient to explain clinically observed conduction block in human diseases.

Journal ArticleDOI
TL;DR: Herpes simplex virus provides a versatile tool for manipulating the glutamate receptor phenotype of postmitotic neurons and will permit study of the role of individual glutamate receptor subunits in neuronal physiology and pathophysiology.

Journal Article
TL;DR: Recent insights into mechanisms of motor neuron degeneration in ALS that have emerged from studies of these new animal models of this neurodegenerative disease are summarized.

Journal ArticleDOI
Y Tang, Olivier Rampin, André Calas1, P Facchinetti1, F. Giuliano 
TL;DR: In this article, the role of oxytocin and serotonin in the spinal regulation of penile erection has been investigated in the rat spinal cord in the presence of the ischiocavernosus and bulbospongiosus striated muscles.