scispace - formally typeset
Search or ask a question

Showing papers on "Osteopontin published in 2005"


Journal ArticleDOI
15 Aug 2005-Blood
TL;DR: Exogenous Opn potently suppresses the proliferation of primitive HPCs in vitro, the physiologic relevance of which is demonstrated by the markedly enhanced cycling of HSC in Opn-/- mice.

774 citations


Journal ArticleDOI
TL;DR: It is believed that the phosphate groups promote mineralization of the hydrogel network, and this mineral phase sequesters cell-secreted osteopontin within the gel, resulting in enhanced cell-matrix interactions and improved cell viability.

344 citations


Journal ArticleDOI
TL;DR: It is concluded that LLLT promotes proliferation and maturation of human osteoblasts in vitro and may have clinical implications.
Abstract: Objectives: The aim of the present study was to investigate the effect of low-level laser irradiation on proliferation and differentiation of a human osteoblast cell line. Background data: It was previously found that lowlevel laser therapy (LLLT) enhances bone repair in experimental models. Materials and methods: Cultured osteoblast cells were irradiated using He-Ne laser irradiation (632 nm; 10 mW power output). On the second and third day after seeding the osteoblasts were exposed to laser irradiation. The effect of irradiation on osteoblast proliferation was quantified by cell count and colorimetric MTT (dimethylthiazol tetrazolium bromide) assay 24 and 48 h after second irradiation. Results: Asignificant 31–58% increase in cell survival (MTT assay) and higher cell count in the once-irradiated as compared to nonirradiated cells was monitored. Differentiation and maturation of the cells was followed by osteogenic markers: alkaline phosphatase (ALP), osteopontin (OP), and bone sialoprotein (BSP). A two-...

333 citations


Journal ArticleDOI
TL;DR: This article focuses on two molecules, phosphate and osteopontin, that have been implicated in the induction or inhibition of vascular calcification, respectively.
Abstract: Vascular calcification is prevalent in aging as well as a number of pathological conditions, and it is now recognized as a strong predictor of cardiovascular events in the general population as well as diabetic and end-stage renal disease patients. Vascular calcification is a highly regulated process involving inductive and inhibitory mechanisms. This article focuses on two molecules, phosphate and osteopontin, that have been implicated in the induction or inhibition of vascular calcification, respectively. Elevated phosphate is of interest because hyperphosphatemia is recognized as a major nonconventional risk factor for cardiovascular disease mortality in end-stage renal disease patients. Studies to date suggest that elevated phosphate stimulates smooth muscle cell phenotypic transition and mineralization via the activity of a sodium-dependent phosphate cotransporter. Osteopontin, however, appears to block vascular calcification most likely by preventing calcium phosphate crystal growth and inducing cellular mineral resorption.

299 citations


Journal ArticleDOI
TL;DR: Hypercholesterolemic AV calcification is attenuated by atorvastatin and is mediated in part by the Lrp5/&bgr;-catenin pathway, which may be important in the signaling pathway of this disease.
Abstract: Background— Calcific aortic valve disease is the most common indication for surgical valve replacement in the United States. The cellular mechanisms of valve calcification are not well understood. We have previously shown that cellular proliferation and osteoblastogenesis are important in the development of valvular heart disease. Lrp5, a known low-density receptor-related protein, plays an essential role in cellular proliferation and osteoblastogenesis via the β-catenin signaling pathway. We hypothesize that Lrp5 also plays a role in aortic valve (AV) calcification in experimental hypercholesterolemia. Methods and Results— We examined the effects of cholesterol and atorvastatin in Watanabe rabbits (n=54). Group I (n=18) received a normal diet, group II (n=18) a 0.25% cholesterol diet, and group III (n=18) a 0.25% (w/w) cholesterol diet with atorvastatin for the development of calcification. The AVs were examined for cellular proliferation, Lrp5/β-catenin, and bone matrix markers. Bone formation was assessed by micro-computed tomography, calcein injection, and osteopontin expression. Low-density lipoprotein with and without atorvastatin was also tested in AV myofibroblasts for cellular proliferation and regulation of the Lrp5/β-catenin pathway. Our results demonstrate that the cholesterol diet induced complex bone formations in the calcified AVs with an increase in the Lrp5 receptors, osteopontin, and p42/44 expression. Atorvastatin reduced bone formation, cellular proliferation, and Lrp5/β-catenin protein levels in the AVs. In vitro analysis confirmed the Lrp5/β-catenin expression in myofibroblast cell proliferation. Conclusion— Hypercholesterolemic AV calcification is attenuated by atorvastatin and is mediated in part by the Lrp5/β-catenin pathway. This developmental pathway may be important in the signaling pathway of this disease.

269 citations


Journal ArticleDOI
TL;DR: The present study demonstrates the expression of molecular markers that are distinctive for the osteoblastic phenotype in MBA‐15 marrow stroma cells and have crucial role in cell–matrix interaction, in establishing the cellular osteogenic phenotype and their survival.
Abstract: Marrow stroma cells (MSC) play a major role in osteogenesis. The potential of the MSC to differentiate to bone-forming cells relies upon molecular regulation. This study analyzed MBA-15 cells for the expression of genes and proteins that are key regulators of osteoblast differentiation. These cells express Cbfa1 and c-fos transcription factors (TF) of osteoprogenitor proliferating cells. RT-PCR and immunohistochemistry were used to demonstrate the message and protein expression of extracellular matrix proteins that are a prerequisite for matrix formation and mineralization, including alkaline phosphatase (ALP), osteocalcin, osteopontin, biglycan, and bone sialoprotein (BSP). The activity of ALP was correlated at various cell densities with co-expression of osteocalcin or osteopontin. Adhering cells must attach to the appropriate matrix to enable survival and differentiation. Using attachment assays, we demonstrated that MBA-15 cells adhered to collagenous matrix and the effect on survival measured by changes in intracellular calcium (Ca) levels. The cells' adhesion to matrix is mediated via cell surface molecules. We quantified the expression of cells surface molecules that are important players in mediating cell-matrix interaction. Flow cytometry analysis (FACS) was used to determine the expression of CD-31 (36%), and lower levels were identified for CD-62E and CD11b. In summary, the present study demonstrates the expression of molecular markers that are distinctive for the osteoblastic phenotype in MBA-15 marrow stroma cells and have crucial role in cell-matrix interaction, in establishing the cellular osteogenic phenotype and their survival.

242 citations


Journal ArticleDOI
TL;DR: It is shown that several HDIs promote osteoblast maturation in vitro and in calvarial organ cultures.
Abstract: HDIs are potential therapeutic agents for cancer and neurological diseases because of their abilities to alter gene expression, induce growth arrest or apoptosis of tumors cells, and stimulate differentiation. In this report, we show that several HDIs promote osteoblast maturation in vitro and in calvarial organ cultures. Introduction: Histone deacetylase inhibitors (HDIs) are currently in phase I and II clinical trials as anticancer agents. Some HDIs are also commonly prescribed treatments for epilepsy and bipolar disorders. Although administered systemically, the effects of HDIs on osteoblasts and bone formation have not been extensively examined. In this study, we investigated the effect of histone deacetylase inhibition on osteoblast proliferation and differentiation. Materials and Methods: MC3T3-E1 cells, calvarial-derived primary osteoblasts, and calvarial organ cultures were treated with various commercially available HDIs (trichostatin A [TSA], sodium butyrate [NaB], valproic acid [VPA], or MS-275). The effects of these inhibitors on cell proliferation, viability, cell cycle progression, Runx2 transcriptional activity, alkaline phosphatase production, and matrix mineralization were determined. Expression levels of osteoblast maturation genes, type I collagen, osteopontin, bone sialoprotein, and osteocalcin in response to TSA were measured by quantitative PCR. Results: Concentrations of HDIs that caused hyperacetylation of histone H3 induced transient increases in osteoblast proliferation and viability but did not alter cell cycle profiles. These concentrations of HDIs also increased the transcriptional activity of Runx2. TSA accelerated alkaline phosphatase production in MC3T3-E1 cells and calvarial organ cultures. In addition, TSA accelerated matrix mineralization and the expression of osteoblast genes, type I collagen, osteopontin, bone sialoprotein, and osteocalcin in MC3T3-E1 cells. Conclusions: These studies show that histone deacetylase activity regulates osteoblast differentiation and bone formation at least in part by enhancing Runx2-dependent transcriptional activation. Therefore, HDIs are a potentially new class of bone anabolic agents that may be useful in the treatment of diseases that are associated with bone loss such as osteoporosis and cancer.

223 citations


Journal ArticleDOI
TL;DR: It is shown that incubation of cortical neuron cultures with OPN protects against cell death from oxygen and glucose deprivation and suggests that OPN is a potent neuroprotectant against ischemic injury.
Abstract: Osteopontin (OPN) is a secreted extracellular phosphoprotein involved in diverse biologic functions, including inflammation, cell migration, and antiapoptotic processes. Here we investigate the neuroprotective potential of OPN to reduce cell death using both in vitro and in vivo models of ischemia. We show that incubation of cortical neuron cultures with OPN protects against cell death from oxygen and glucose deprivation. The effect of OPN depends on the Arg-Gly-Asp (RGD)-containing motif as the protective effect of OPN in vitro was blocked by an RGD-containing hexapeptide, which prevents integrin receptors binding to their ligands. Osteopontin treatment of cortical neuron cultures caused an increase in Akt and p42/p44 MAPK phosphorylation, which is consistent with OPN-inducing neuroprotection via the activation of these protein kinases. Indeed, the protective effect of OPN was reduced by inhibiting the activation of Akt and p42/p44 MAPK using LY294002 and U0126, respectively. The protective effect of OPN was also blocked by the protein synthesis inhibitor cycloheximide, suggesting that the neuroprotective effect of OPN required new protein synthesis. Finally, intracerebral ventricular administration of OPN caused a marked reduction in infarct size after transient middle cerebral artery occlusion in a murine stroke model. These data suggest that OPN is a potent neuroprotectant against ischemic injury.

193 citations


Journal ArticleDOI
TL;DR: It is suggested that PRP has a favorable effect on human osteoblast-like cells, and acts both to enhance bone regeneration and as an activator in wound healing.

193 citations


Journal ArticleDOI
TL;DR: It was concluded that mechanical load promotes the proliferation and differentiation of osteoblastic precursor cells in a Col I matrix and that the application of mechanical stimuli may have a beneficial effect on in vitro tissue formation.

191 citations


Journal ArticleDOI
01 Jun 2005-Bone
TL;DR: It is postulated that proliferation and osteoblastic differentiation of BMSCs may be stimulated by mechanical forces, and results indicate that repeated application of shear stress stimulates late phenotypic markers of osteoblasts in a manner that depends on the duration of stimulus.

Journal ArticleDOI
TL;DR: It is demonstrated that BMP-induced osteogenesis in poorly responsive human MSC requires modulation of ERK and phosphatidylinositol 3-kinase (PI3-K) pathways, which are involved in the expression of early osteoblast-associated genes, alkaline phosphatase and osteopontin.
Abstract: Bone marrow stromal cells (MSC) are the major source of osteoblasts for bone remodeling and repair in postnatal animals. Rodent MSC cultured with bone morphogenetic proteins (BMPs) differentiate into osteoblasts, but most human MSC show a poor osteogenic response to BMPs. In this study we demonstrate that BMP-induced osteogenesis in poorly responsive human MSC requires modulation of ERK and phosphatidylinositol 3-kinase (PI3-K) pathways. Either treating human MSC cultures with the MAPK/ERK kinase inhibitor PD98059 or transferring them to serum-free medium with insulin or IGF-I permits BMP-dependent increases in the expression of the early osteoblast-associated genes, alkaline phosphatase and osteopontin. Increased expression of these genes in BMP-treated, serum-free cultures correlates with increased nuclear levels of activated Smads, whereas serum-free cultures of human MSC expressing constitutively active MAPK/ERK kinase show decreased expression of early osteoblast genes and decreased nuclear translocation of BMP-activated Smads. Inhibiting ERK activity in human MSC also elevates the expression of Msx2, a transcription factor that is directly regulated by Smad-binding elements in its promoter. Therefore, growth factor stimulation leading to high levels of ERK activity in human MSC results in suppressed BMP-induced transcription of several early osteoblast genes, probably because levels of BMP-activated nuclear Smads are decreased. In contrast, inhibiting the insulin/IGF-I-activated PI3-K/AKT pathway decreases BMP-induced alkaline phosphatase and osteopontin expression in serum-free cultures of human MSC, but increases BMP activation of Smads; thus, PI3-K signaling is required for BMP-induced expression of early osteoblast genes in human MSC either downstream or independent of the BMP-activated Smad signaling pathway.

Journal ArticleDOI
TL;DR: Beta-TCP has a good biocompatibility since both bioresorption and bone formation started at an early stage after implantation, and there were some doubly positive multinucleated cells suggesting that they belonged to the mononuclear phagocyte system.

Journal ArticleDOI
TL;DR: It is found that resveratrol reduces dose-dependently the growth of myeloma cell lines (RPMI 8226 and OPM-2) by a mechanism involving cell apoptosis and up-regulates dose-dependent the expression of 1,25(OH)2D3 nuclear receptor.
Abstract: Multiple myeloma is characterized by the accumulation of clonal malignant plasma cells in the bone marrow, which stimulates bone destruction by osteoclasts and reduces bone formation by osteoblasts. In turn, the changed bone microenvironment sustains survival of myeloma cells. Therefore, a challenge for treating multiple myeloma is discovering drugs targeting not only myeloma cells but also osteoclasts and osteoblasts. Because resveratrol (trans-3,4',5-trihydroxystilbene) is reported to display antitumor activities on a variety of human cancer cells, we investigated the effects of this natural compound on myeloma and bone cells. We found that resveratrol reduces dose-dependently the growth of myeloma cell lines (RPMI 8226 and OPM-2) by a mechanism involving cell apoptosis. In cultures of human primary monocytes, resveratrol inhibits dose-dependently receptor activator of nuclear factor-kappaB (NF-kappaB) ligand-induced formation of tartrate-resistant acid phosphatase (TRACP)-positive multinucleated cells, TRACP activity in the medium, up-regulation of cathepsin K gene expression, and bone resorption. These inhibitions are associated with a down-regulation of RANK expression at both mRNA and cell surface protein levels and a decrease of NFATc1 stimulation and NF-kappaB nuclear translocation, whereas the gene expression of c-fms, CD14, and CD11a is up-regulated. Finally, resveratrol promotes dose-dependently the expression of osteoblast markers like osteocalcin and osteopontin in human bone marrow mesenchymal stem cells (hMSC-TERT) and stimulates their response to 1,25(OH)2 vitamin D3 [1,25(OH)2D3]. Moreover, resveratrol up-regulates dose-dependently the expression of 1,25(OH)2D3 nuclear receptor. Taken together, these results suggest that resveratrol or its derivatives deserve attention as potential drugs for treating multiple myeloma.

Journal ArticleDOI
TL;DR: NPP1 and PPi deficiencies modulate phenotype plasticity in artery SMCs and chondrogenesis in mesenchymal precursors, thereby stimulating artery calcification by modulating cell differentiation.
Abstract: Objective— We recently linked human arterial media calcification of infancy to heritable PC-1/nucleotide pyrophosphatase phosphodiesterase 1 (NPP1) deficiency. NPP1 hydrolyzes ATP to generate PP i , a physicochemical inhibitor of hydroxyapatite crystal growth. But pathologic calcification in NPP1 deficiency states is tissue-restricted and in perispinal ligaments is endochondral differentiation–mediated rather than simply a dystrophic process. Because ectopic chondro-osseous differentiation promotes artery calcification in atherosclerosis and other disorders, we tested the hypothesis that NPP1 and PP i deficiencies regulate cell phenotype plasticity to promote artery calcification. Methods and Results— Using cultured multipotential NPP1−/− mouse bone marrow stromal cells, we demonstrated spontaneous chondrogenesis inhibitable by treatment with exogenous PP i . We also demonstrated cartilage-specific gene expression, upregulated alkaline phosphatase, decreased expression of the physiological calcification inhibitor osteopontin, and increased calcification in NPP1−/− aortic smooth muscle cells (SMCs). Similar changes were demonstrated in aortic SMCs from ank/ank mice, which are extracellular PP i –depleted because of defective ANK transmembrane PP i transport activity. Moreover, NPP1−/− and ank/ank mice demonstrated aortic media calcification by von Kossa staining, and intra-aortic cartilage-specific collagen gene expression was demonstrated in situ in NPP1−/− mice. Conclusions— NPP1 and PP i deficiencies modulate phenotype plasticity in artery SMCs and chondrogenesis in mesenchymal precursors, thereby stimulating artery calcification by modulating cell differentiation.

Journal ArticleDOI
TL;DR: Novel mechanisms involving the intersection of three pathways, Runx2, 1,25(OH)2D3, and Notch signaling, that play a major role in the regulation of OPN in osteoblastic cells and therefore in the process of bone remodeling are defined.

Journal ArticleDOI
TL;DR: It is demonstrated for the first time to the authors' knowledge that overexpression of OPN in synovial T cells is associated with local inflammatory milieu and that OPN acts as an important mediator in amplification and perpetuation of rheumatoid synovitis.
Abstract: Osteopontin (OPN) is an extracellular matrix protein of pleiotropic properties and has been recently recognized as a potential inflammatory cytokine. In this study, we demonstrate, for the first time to our knowledge, that overexpression of OPN in synovial T cells is associated with local inflammatory milieu and that OPN acts as an important mediator in amplification and perpetuation of rheumatoid synovitis. The study revealed that mRNA expression of OPN was highly elevated in CD4(+) synovial T cells derived from patients with RA, which correlated with increased OPN concentrations in synovial fluid (SF). The pattern of OPN overexpression was confined to rheumatoid synovium and correlated with coexpression of selected OPN receptors in synovial T cells, including integrins alphav and beta1 and CD44. RA-derived SF stimulated the expression of OPN in T cells, which was attributable to IL-10 present in SF and abrogated by anti-IL-10 antibody. Among the more than 300 autoimmune and inflammatory response genes examined, OPN selectively induced the expression of proinflammatory cytokines and chemokines known to promote migration and recruitment of inflammatory cells. Furthermore, it was evident that OPN activated transcription factor NF-kappaB in mononuclear cells. The study has important implications for understanding the role of OPN in rheumatoid synovitis and other inflammatory conditions.

Journal ArticleDOI
TL;DR: The results suggest that the hierarchy of integrin interactions with osteopontin can undergo complex regulation at least in part through the action of extracellular proteases.

Journal ArticleDOI
TL;DR: In contrast to salivary gland in which all SIBLINGs and their MMP partners were coexpressed throughout the length of the ducts, these proteins were differentially expressed within the normal adult nephron.

Journal ArticleDOI
TL;DR: It is found that T-bet-dependent expression of Opn in T cells is essential for efficient skewing of CD4+ T and CD8- T cells toward the Th1 and type 1 CD8+ T cells (Tc1) pathway, respectively.
Abstract: The osteopontin (Opn) glycoprotein has been implicated in diverse physiological processes, including vascularization, bone formation, and inflammatory responses. Studies of its role in immune responses has suggested that Opn can set the early stage of type-1 immune (cell-mediated) responses through differential regulation of IL-12 and IL-10 cytokine gene expression in macrophages. Although Opn has been suggested to play a role in the development of type-1 immunity, little is known about control of Opn gene expression. Here, we report that Opn gene expression in activated T cells, but not macrophages, is regulated by T-bet, a transcription factor that controls CD4+ T helper (Th1) cell lineage commitment. We also find that T-bet-dependent expression of Opn in T cells is essential for efficient skewing of CD4+ T and CD8+ T cells toward the Th1 and type 1 CD8+ T cells (Tc1) pathway, respectively. Taken together, these findings begin to delineate the genetic basis of Opn expression in T cells and further clarify the role of Opn in Th and Tc1 development.

Journal ArticleDOI
TL;DR: Osteopontin expression was associated with tumor growth, tumor staging, and lymph node invasion, and may be important in the development and progression of the cancer.
Abstract: Purpose: The extracellular matrix (ECM) molecule osteopontin is implicated in many pathologic processes, including inflammation, cell proliferation, ECM invasion, tumor progression, and metastasis. The present study evaluated the clinical and biological importance of osteopontin in human lung cancer. Experimental Design and Results: Tissue microarrays derived from non–small cell lung cancer (NSCLC) patients were analyzed immunohistochemically. Osteopontin protein expression was observed in 64.5% (205 of 318) of primary tumors and 75.5% (108 of 143) of lymph node metastases, but in only 27.9% (12 of 43) of normal-appearing bronchial epithelial and pulmonary tissues. Osteopontin expression was associated with tumor growth, tumor staging, and lymph node invasion. In vitro osteopontin enhanced ECM invasion of NSCLC cells, and an osteopontin antibody abolished this effect. We further analyzed osteopontin levels in circulating plasma derived from 158 patients with NSCLC, 54 patients of benign pulmonary disease, and 25 healthy donors, and found that the median osteopontin levels for the three groups were 319.1, 161.6, and 17.9 ng/mL, respectively. Conclusions: Overexpression of osteopontin is common in primary NSCLC and may be important in the development and progression of the cancer. Osteopontin levels in the plasma may serve as a biomarker for diagnosing or monitoring patients with NSCLC.

Journal ArticleDOI
TL;DR: In this article, the authors used high-density DNA microarrays to examine the gene expression profiles of metastatic melanoma nodules using benign nevi as controls and found that osteopontin (OPN) expression is first acquired at the step of melanoma tissue invasion.

Journal ArticleDOI
TL;DR: For the first time, acid-sensing ion channels (ASICs) are demonstrated in human skeleton, providing a means to sense and respond to differences in extracellular pH.

Journal ArticleDOI
TL;DR: Low intensity pulsed ultrasound treatment in rat bone marrow derived stromal cells resulted in elevated transient expression of early response genes as well as extracellular matrix genes associated with cell proliferation and differentiation, which may represent the effect of LIPUS to cells of osteoblastic lineage.
Abstract: The aim of the current research was to quantify the changes in gene expression in rat bone marrow derived stromal cells (BMSC) to low intensity pulsed ultrasound (LIPUS) during early time points after the ultrasound application. LIPUS at 1.5 MHz, 30 mW/cm(2) was applied to BMSC for a single 20 min treatment. Real-time PCR was carried out to quantify the expression of early response genes and bone differentiation marker genes 0.5, 1, 3, 6 and 12 h after the end of the LIPUS treatment. Compared with the controls, LIPUS treatment resulted in elevated transient expression of early response genes (c-jun, c-myc, COX-2, Egr-1, TSC-22) as well as the bone differentiation marker genes, osteonectin and osteopontin, at 3 h. This induction of early response genes as well as extracellular matrix genes associated with cell proliferation and differentiation may represent the effect of LIPUS to cells of osteoblastic lineage.

Journal ArticleDOI
01 Sep 2005-Gut
TL;DR: Increased OPN expression facilitates cytokine production and is closely involved in the Th1 immune response associated with Crohn’s disease.
Abstract: Background and aims: The pathogenesis of Crohn’s disease (CD), a chronic inflammatory bowel disease characterised by a Th1 immune response, remains unclear. Osteopontin (OPN) is a phosphoprotein known as an adhesive bone matrix protein. Recent studies have shown that OPN plays an important role in lymphocyte migration, granuloma formation, and interleukin 12 (IL-12) production. The present study investigated expression and the pathophysiological role of OPN in CD. Methods: Plasma OPN concentration was measured by enzyme linked immunosorbent assay. Expression of OPN in human intestinal mucosa was determined using reverse transcription-polymerase chain reaction and western blot, and localisation of OPN was examined by immunohistochemistry. Expression of integrin β 3 , an OPN receptor, on lamina propria mononuclear cells (LPMC) was assessed by flow cytometry. Functional activation of OPN in LPMC was investigated by measuring the production of cytokines. Results: Plasma OPN concentration was significantly higher in patients with CD compared with normal controls or patients with ulcerative colitis (UC). OPN was upregulated in intestinal mucosa from UC and CD patients. OPN producing cells were epithelial or IgG producing plasma cells, or partial macrophages. OPN was detected in areas surrounding granuloma from mucosa in CD. Integrin β 3 expressing macrophages infiltrated inflamed mucosa in UC and CD; in contrast, there was no expression of integrin β 3 on intestinal macrophages in normal mucosa. OPN induced production of IL-12 from LPMC in CD but not in normal controls or UC. Conclusions: Increased OPN expression facilitates cytokine production and is closely involved in the Th1 immune response associated with CD.

Journal ArticleDOI
TL;DR: The lack of space-providing capacity of ACS may be one of the major factors responsible for its failure to maintain the newly induced bone in a rat subcutaneous assay model.

Journal ArticleDOI
TL;DR: These studies implicate controlled, transcellular transport of Pi as a major requirement for matrix calcification, and indicate that in addition to inhibiting apatite crystal initiation and growth, osteopontin stimulates resorption of ectopic calcification via peripheral macrophages and giant cells.
Abstract: Structured Abstract Author – Giachelli CM Objectives – Ectopic calcification is a common response to soft tissue injury and systemic mineral imbalance and can lead to devastating clinical consequences when present in joints, heart valves and blood vessels. We have hypothesized that mineralization of matrices in any tissue is normally controlled by a balance between procalcific and anticalcific regulatory proteins such that abnormal deposition of apatite is avoided. Alterations in this balance induced by injury, disease or genetic deficiency are postulated to induce ectopic mineral deposition. Over the past several years, we have developed in vitro and in vivo models of ectopic calcification to investigate potential inducers and inhibitors of this process. Results – Osteopontin, a secreted phosphoprotein, has emerged as a major inhibitor of ectopic mineralization. Osteopontin is a potent inhibitor of vascular cell calcification in vitro and mice lacking osteopontin are highly susceptible to ectopic calcification. Furthermore, osteopontin treatment of biomaterials protected against ectopic mineralization. Our studies indicate that in addition to inhibiting apatite crystal initiation and growth, osteopontin stimulates resorption of ectopic calcification via peripheral macrophages and giant cells. In contrast, inorganic phosphate has emerged as a major inducer of mineralization in these systems. Elevated inorganic phosphate (Pi) was shown to induce smooth muscle cell matrix calcification with morphological properties similar to those observed in calcified human valves and atherosclerotic plaques. Furthermore, mineralization induced by inorganic phosphate was dependent on the activity of the sodium-dependent phosphate cotransporter, Pit-1. Conclusions – These studies implicate controlled, transcellular transport of Pi as a major requirement for matrix calcification.

Journal ArticleDOI
TL;DR: Positive in vivo evidence is provided that Indian hedgehog not only regulates chondrocyte proliferation and differentiation but also exerts effects on osteoblast differentiation, which will form the basis for further study to determine the molecular mechanisms of skeletal diseases involving various cellular components of bone.
Abstract: Indian hedgehog (Ihh) is actively involved in endochondral bone formation. Although expression of Ihh is mostly restricted to pre-hypertrophic chondrocytes, the role of chondrocyte-derived Ihh in endochondral bone formation is not completely understood. To address such unresolved issues, we used the Cre/loxP approach to generate mice (Col2α1Cre;Ihhd/Ihhd) in which the Ihh gene was selectively ablated from collagen type II expressing cells. Mutant mice were born with the expected ratio of Mendelian inheritance, but died shortly after birth and were smaller in size, exhibiting malformed and retarded growth of limbs with severe skeletal deformities. Alizarin red S staining showed abnormal mineralization of axial and appendicular bones. Histological analysis of mutant long bones revealed abnormal endochondral bone formation with loss of a normal growth plate. In addition, in vivo bromo-deoxyuridine (BrdU) labelling showed a marked decrease in chondrocyte proliferation. A delay in chondrocyte hypertrophy in Col2α1Cre;Ihhd/Ihhd mice was detected by the expression of collagen type X and osteopontin, using in situ hybridization. Furthermore, there was no expression of bone markers such as collagen type I, bone Gla protein, Runx2/Cbfa1 or PTH-R in the perichondrium of mutant mice, indicating the absence of osteoblasts from endochondral bones. Thus, selective loss of chondrocyte-derived Ihh recapitulated the defects in Ihh−/− animals, providing direct in vivo evidence that Ihh not only regulates chondrocyte proliferation and differentiation but also exerts effects on osteoblast differentiation. Understanding the exact functions of the molecules involved in endochondral bone formation will form the basis for further study to determine the molecular mechanisms of skeletal diseases involving various cellular components of bone. Copyright © 2005 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

Journal ArticleDOI
01 May 2005-Bone
TL;DR: In vitro data revealed that neurofibromin and its control of Ras signaling are required for osteoprogenitor homeostasis, and redundant pathways must compensate for the deregulation of Ras signalling in vivo to maintain normal bone mass and function in vivo.

Journal ArticleDOI
TL;DR: It is shown that osthole exhibits a significant induction of differentiation in two human osteoblast-like cell lines, MG-63 and hFOB, and suggests that BMP-2/p38 pathway links to the early phase, whereas ERK1/2 pathway is associated with the later phase in osthole-mediated differentiation of osteOBlast cells.
Abstract: The survival of osteoblast cells is one of the determinants of the development of osteoporosis in patients. Osthole (7-methoxy-8-isopentenoxycoumarin) is a coumarin derivative present in many medicinal plants. By means of alkaline phosphatase (ALP) activity, osteocalcin, osteopontin, and type I collagen, enzyme-linked immunosorbent assay, we have shown that osthole exhibits a significant induction of differentiation in two human osteoblast-like cell lines, MG-63 and hFOB. Induction of differentiation by osthole was associated with increased bone morphogenetic protein (BMP)-2 production and the activations of SMAD1/5/8 and p38 and extracellular signal-regulated kinase (ERK) 1/2 kinases. Addition of purified BMP-2 protein did not increase the up-regulation of ALP activity and osteocalcin by osthole, whereas the BMP-2 antagonist noggin blocked both osthole and BMP-2-mediated ALP activity enhancement, indicating that BMP-2 production is required in osthole-mediated osteoblast maturation. Pretreatment of osteoblast cells with noggin abrogated p38 activation but only partially decreased ERK1/2 activation, suggesting that BMP-2 signaling is required in p38 activation and is partially involved in ERK1/2 activation in osthole-treated osteoblast cells. Cotreatment of p38 inhibitor SB203580 [4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)-1H-imidazole] or p38 small interfering RNA (siRNA) expression inhibited osthole-mediated activation of ALP but only slightly affected osteocalcin production. In contrast, the production of osteocalcin induced by osthole was inhibited by the mitogen-activated protein kinase kinase inhibitor PD98059 (2'-amino-3'-methoxyflavone) or by expression of an ERK2 siRNA. These data suggest that BMP-2/p38 pathway links to the early phase, whereas ERK1/2 pathway is associated with the later phase in osthole-mediated differentiation of osteoblast cells. In this study, we demonstrate that osthole is a promising agent for treating osteoporosis.