scispace - formally typeset
Search or ask a question

Showing papers on "Oxide published in 2010"


Journal ArticleDOI
TL;DR: This review will be of value to synthetic chemists interested in this emerging field of materials science, as well as those investigating applications of graphene who would find a more thorough treatment of the chemistry of graphene oxide useful in understanding the scope and limitations of current approaches which utilize this material.
Abstract: The chemistry of graphene oxide is discussed in this critical review Particular emphasis is directed toward the synthesis of graphene oxide, as well as its structure Graphene oxide as a substrate for a variety of chemical transformations, including its reduction to graphene-like materials, is also discussed This review will be of value to synthetic chemists interested in this emerging field of materials science, as well as those investigating applications of graphene who would find a more thorough treatment of the chemistry of graphene oxide useful in understanding the scope and limitations of current approaches which utilize this material (91 references)

10,126 citations


Journal ArticleDOI
Hao Zhang1, Xiao-Jun Lv1, Yueming Li1, Ying Wang1, Jinghong Li1 
26 Jan 2010-ACS Nano
TL;DR: A chemically bonded TiO(2) (P25)-graphene nanocomposite photocatalyst with graphene oxide and P25, using a facile one-step hydrothermal method could provide new insights into the fabrication of a TiO (2)-carbon composite as high performance photocatalysts and facilitate their application in the environmental protection issues.
Abstract: Herein we obtained a chemically bonded TiO2 (P25)-graphene nanocomposite photocatalyst with graphene oxide and P25, using a facile one-step hydrothermal method. During the hydrothermal reaction, both of the reduction of graphene oxide and loading of P25 were achieved. The as-prepared P25-graphene photocatalyst possessed great adsorptivity of dyes, extended light absorption range, and efficient charge separation properties simultaneously, which was rarely reported in other TiO2−carbon photocatalysts. Hence, in the photodegradation of methylene blue, a significant enhancement in the reaction rate was observed with P25-graphene, compared to the bare P25 and P25-CNTs with the same carbon content. Overall, this work could provide new insights into the fabrication of a TiO2−carbon composite as high performance photocatalysts and facilitate their application in the environmental protection issues.

2,944 citations


Journal ArticleDOI
TL;DR: This Review highlights the recent advances in optical properties of chemically derived GO, as well as new physical and biological applications that are attracting chemists for its own characteristics.
Abstract: Chemically derived graphene oxide (GO) is an atomically thin sheet of graphite that has traditionally served as a precursor for graphene, but is increasingly attracting chemists for its own characteristics. It is covalently decorated with oxygen-containing functional groups - either on the basal plane or at the edges - so that it contains a mixture of sp(2)- and sp(3)-hybridized carbon atoms. In particular, manipulation of the size, shape and relative fraction of the sp(2)-hybridized domains of GO by reduction chemistry provides opportunities for tailoring its optoelectronic properties. For example, as-synthesized GO is insulating but controlled deoxidation leads to an electrically and optically active material that is transparent and conducting. Furthermore, in contrast to pure graphene, GO is fluorescent over a broad range of wavelengths, owing to its heterogeneous electronic structure. In this Review, we highlight the recent advances in optical properties of chemically derived GO, as well as new physical and biological applications.

2,937 citations


Journal ArticleDOI
Cheng-Xiang Wang1, Longwei Yin, Luyuan Zhang, Dong Xiang, Rui Gao 
15 Mar 2010-Sensors
TL;DR: A brief review of changes of sensitivity of conductometric semiconducting metal oxide gas sensors due to the five factors: chemical components, surface-modification and microstructures of sensing layers, temperature and humidity.
Abstract: Conductometric semiconducting metal oxide gas sensors have been widely used and investigated in the detection of gases. Investigations have indicated that the gas sensing process is strongly related to surface reactions, so one of the important parameters of gas sensors, the sensitivity of the metal oxide based materials, will change with the factors influencing the surface reactions, such as chemical components, surface-modification and microstructures of sensing layers, temperature and humidity. In this brief review, attention will be focused on changes of sensitivity of conductometric semiconducting metal oxide gas sensors due to the five factors mentioned above.

2,122 citations


Journal ArticleDOI
TL;DR: It is demonstrated that the individual graphene oxide sheets can be readily reduced under a mild condition using L-ascorbic acid (L-AA), which should find practical applications in large scale production of water soluble graphene.

2,113 citations


Journal ArticleDOI
12 Apr 2010-ACS Nano
TL;DR: This method provides a facile and straightforward approach to deposit MnO(2) nanoparticles onto the graphene oxide sheets (single layer of graphite oxide) and may be readily extended to the preparation of other classes of hybrids based on GO sheets for technological applications.
Abstract: A composite of graphene oxide supported by needle-like MnO2 nanocrystals (GO−MnO2 nanocomposites) has been fabricated through a simple soft chemical route in a water−isopropyl alcohol system. The formation mechanism of these intriguing nanocomposites investigated by transmission electron microscopy and Raman and ultraviolet−visible absorption spectroscopy is proposed as intercalation and adsorption of manganese ions onto the GO sheets, followed by the nucleation and growth of the crystal species in a double solvent system via dissolution−crystallization and oriented attachment mechanisms, which in turn results in the exfoliation of GO sheets. Interestingly, it was found that the electrochemical performance of as-prepared nanocomposites could be enhanced by the chemical interaction between GO and MnO2. This method provides a facile and straightforward approach to deposit MnO2 nanoparticles onto the graphene oxide sheets (single layer of graphite oxide) and may be readily extended to the preparation of othe...

1,953 citations


Journal ArticleDOI
TL;DR: A novel reducing agent system (hydriodic acid with acetic acid (HI-AcOH) that allows for an efficient, one-pot reduction of a solution-phased RG-O powder and vapour-phasingRG-O (VRG-O) paper and thin film is reported.
Abstract: Reduced graphene oxides (RG-Os) have attracted considerable interest, given their potential applications in electronic and optoelectronic devices and circuits. However, very little is known regarding the chemically induced reduction method of graphene oxide (G-O) in both solution and gas phases, with the exception of the hydrazine-reducing agent, even though it is essential to use the vapour phase for the patterning of hydrophilic G-Os on prepatterned substrates and in situ reduction to hydrophobic RG-Os. In this paper, we report a novel reducing agent system (hydriodic acid with acetic acid (HI-AcOH)) that allows for an efficient, one-pot reduction of a solution-phased RG-O powder and vapour-phased RG-O (VRG-O) paper and thin film. The reducing agent system provided highly qualified RG-Os by mass production, resulting in highly conducting RG-O(HI-AcOH). Moreover, VRG-O(HI-AcOH) paper and thin films were prepared at low temperatures (40 °C) and were found to be applicable to flexible devices. This one-pot method is expected to advance research on highly conducting graphene platelets.

1,923 citations


Journal ArticleDOI
TL;DR: The chemical changes of oxygen-containing functional groups on the annealing of graphene oxide are elucidated and the simulations reveal the formation of highly stable carbonyl and ether groups that hinder its complete reduction to graphene.
Abstract: The excellent electrical, optical and mechanical properties of graphene have driven the search to find methods for its large-scale production, but established procedures (such as mechanical exfoliation or chemical vapour deposition) are not ideal for the manufacture of processable graphene sheets. An alternative method is the reduction of graphene oxide, a material that shares the same atomically thin structural framework as graphene, but bears oxygen-containing functional groups. Here we use molecular dynamics simulations to study the atomistic structure of progressively reduced graphene oxide. The chemical changes of oxygen-containing functional groups on the annealing of graphene oxide are elucidated and the simulations reveal the formation of highly stable carbonyl and ether groups that hinder its complete reduction to graphene. The calculations are supported by infrared and X-ray photoelectron spectroscopy measurements. Finally, more effective reduction treatments to improve the reduction of graphene oxide are proposed.

1,624 citations


Journal ArticleDOI
16 Apr 2010-Science
TL;DR: Extensive spectroscopic, electrochemical, and inhibition studies firmly indicate that [Co4(H2O)2(PW9O34)2]10– is stable under catalytic turnover conditions: Neither hydrated cobalt ions nor cobalt hydroxide/oxide particles form in situ.
Abstract: Traditional homogeneous water oxidation catalysts are plagued by instability under the reaction conditions. We report that the complex [Co4(H2O)2(PW9O34)2]10-, comprising a Co4O4 core stabilized by oxidatively resistant polytungstate ligands, is a hydrolytically and oxidatively stable homogeneous water oxidation catalyst that self-assembles in water from salts of earth-abundant elements (Co, W, and P). With [Ru(bpy)3]3+ (bpy is 2,2'-bipyridine) as the oxidant, we observe catalytic turnover frequencies for O2 production > or = 5 s(-1) at pH = 8. The rate's pH sensitivity reflects the pH dependence of the four-electron O2-H2O couple. Extensive spectroscopic, electrochemical, and inhibition studies firmly indicate that [Co4(H2O)2(PW9O34)2]10- is stable under catalytic turnover conditions: Neither hydrated cobalt ions nor cobalt hydroxide/oxide particles form in situ.

1,300 citations


Journal ArticleDOI
TL;DR: In this paper, the deoxygenation efficiency of graphene oxide suspensions by different reductants (sodium borohydride, pyrogallol, and vitamin C, in addition to hydrazine), as well as by heating the suspensions under alkaline conditions, was compared.
Abstract: The preparation of solution-processable graphene from graphite oxide typically involves a hydrazine reduction step, but the use of such a reagent in the large-scale implementation of this approach is not desirable due to its high toxicity. Here, we compare the deoxygenation efficiency of graphene oxide suspensions by different reductants (sodium borohydride, pyrogallol, and vitamin C, in addition to hydrazine), as well as by heating the suspensions under alkaline conditions. In almost all cases, the degree of reduction attainable and the subsequent restoration of relevant properties (e.g., electrical conductivity) lag significantly behind those achieved with hydrazine. Only vitamin C is found to yield highly reduced suspensions in a way comparable to those provided by hydrazine. Stable suspensions of vitamin C-reduced graphene oxide can be prepared not only in water but also in common organic solvents, such as N,N-dimethylformamide (DMF) or N-methyl-2-pyrrolidone (NMP). These results open the perspective ...

1,269 citations


Journal ArticleDOI
TL;DR: A short review of the types and properties of materials that have been considered for each of these components is presented with an emphasis on the requirements for operation at intermediate temperature (500−800 °C).
Abstract: Solid oxide fuel cells (SOFCs) have the promise to improve energy efficiency and to provide society with a clean energy producing technology. The high temperature of operation (500−1000 °C) enables the solid oxide fuel cell to operate with existing fossil fuels and to be efficiently coupled with turbines to give very high efficiency conversion of fuels to electricity. Solid oxide fuel cells are complex electrochemical devices that contain three basic components, a porous anode, an electrolyte membrane, and a porous cathode. In this short review, a survey of the types and properties of materials that have been considered for each of these components is presented with an emphasis on the requirements for operation at intermediate temperature (500−800 °C). Some directions for future research are discussed.

Journal ArticleDOI
01 Jun 2010-Sensors
TL;DR: The nature of the gas response and how it is fundamentally linked to surface structure is explored and Synthetic routes to metal oxide semiconductor gas sensors are discussed and related to their affect on surface structure.
Abstract: Metal oxide semiconductor gas sensors are utilised in a variety of different roles and industries. They are relatively inexpensive compared to other sensing technologies, robust, lightweight, long lasting and benefit from high material sensitivity and quick response times. They have been used extensively to measure and monitor trace amounts of environmentally important gases such as carbon monoxide and nitrogen dioxide. In this review the nature of the gas response and how it is fundamentally linked to surface structure is explored. Synthetic routes to metal oxide semiconductor gas sensors are also discussed and related to their affect on surface structure. An overview of important contributions and recent advances are discussed for the use of metal oxide semiconductor sensors for the detection of a variety of gases—CO, NOx, NH3 and the particularly challenging case of CO2. Finally a description of recent advances in work completed at University College London is presented including the use of selective zeolites layers, new perovskite type materials and an innovative chemical vapour deposition approach to film deposition.


Journal ArticleDOI
TL;DR: This study presents one particular synthetic method for GO and raGO, and reveals that the raGO material under study is greatly structurally dissimilar to graphene, being unstable under signifi cant electron beam.
Abstract: www.MaterialsViews.com C O M M Determination of the Local Chemical Structure of Graphene Oxide and Reduced Graphene Oxide U N IC A By Kris Erickson , Rolf Erni , Zonghoon Lee , Nasim Alem , Will Gannett , and Alex Zettl * IO N Although the unique electronic and mechanical properties of graphene suggest numerous intriguing applications, the requisite large-scale direct synthesis and solution-based handling have proven diffi cult. [ 1 , 2 ] It has been suggested that a functionalized form of graphene, graphene oxide (GO), could provide a solution-friendly route to facile, high-throughput graphene manipulation. [ 2 ] For such a route to be viable, however, GO must be convertible back to graphene, ostensibly via chemical reduction and thermal annealing. Unfortunately, transport measurements indicate that the reconstituted material, reduced and annealed graphene oxide (raGO), has electrical conductivity orders of magnitude lower than that of graphene. [ 2 , 3 ] This raises the question: can oxidized graphene be effectively converted back to graphene, and if not, what can it be converted to? Central to this question are the detailed atomic structures of GO and raGO, which, despite their importance, remain largely unknown. [ 4 ] We present here ultra-high-resolution transmission electron microscopy (TEM) images and dynamics studies of suspended sheets of graphene, GO, and raGO, obtained using aberration-corrected instrumentation. It should be noted that both the label GO and raGO (also referred to as “chemically converted graphene”) [ 5 ] refer to a wide variety of materials with the properties of each material being largely dependent upon the particular synthetic route employed. This study presents one particular synthetic method for GO and raGO. Among the various methods possible for synthesizing GO and raGO, we followed methods which have yielded the highest reported fi nal conductivities, as this material would be most suitable as a potential graphene alternative. [ 2 , 6–11 ] The local and global structure and stability of GO and raGO are revealed. We fi nd that the raGO material under study is greatly structurally dissimilar to graphene, being unstable under signifi cant electron beam

Journal ArticleDOI
TL;DR: In this paper, the authors review the development of Cr-tolerant cathodes for intermediate temperature solid oxide fuel cells, and a possible mechanism of Cr deposition at cathodes are briefly reviewed as well.
Abstract: The composition and microstructure of cathode materials has a large impact on the performance of solid oxide fuel cells (SOFCs). Rational design of materials composition through controlled oxygen nonstoichiometry and defect aspects can enhance the ionic and electronic conductivities as well as the catalytic properties for oxygen reduction in the cathode. Cell performance can be further improved through microstructure optimization to extend the triple-phase boundaries. A major degradation mechanism in SOFCs is poisoning of the cathode by chromium species when chromium-containing alloys are used as the interconnect material. This article reviews recent developments in SOFC cathodes with a principal emphasis on the choice of materials. In addition, the reaction mechanism of oxygen reduction is also addressed. The development of Cr-tolerant cathodes for intermediate temperature solid oxide fuel cells, and a possible mechanism of Cr deposition at cathodes are briefly reviewed as well. Finally, this review will be concluded with some perspectives on the future of research directions in this area.

Journal ArticleDOI
13 Oct 2010-ACS Nano
TL;DR: The novel AFM imaging and FEM-based mapping methods presented here are of general utility for obtaining the elastic modulus and prestress of thin membranes.
Abstract: Mechanical properties of ultrathin membranes consisting of one layer, two overlapped layers, and three overlapped layers of graphene oxide platelets were investigated by atomic force microscopy (AFM) imaging in contact mode. In order to evaluate both the elastic modulus and prestress of thin membranes, the AFM measurement was combined with the finite element method (FEM) in a new approach for evaluating the mechanics of ultrathin membranes. Monolayer graphene oxide was found to have a lower effective Young’s modulus (207.6 ± 23.4 GPa when a thickness of 0.7 nm is used) as compared to the value reported for “pristine” graphene. The prestress (39.7−76.8 MPa) of the graphene oxide membranes obtained by solution-based deposition was found to be 1 order of magnitude lower than that obtained by others for mechanically cleaved graphene. The novel AFM imaging and FEM-based mapping methods presented here are of general utility for obtaining the elastic modulus and prestress of thin membranes.

Journal ArticleDOI
TL;DR: Light-induced water splitting over iron oxide (hematite) has been achieved by using a particle-assisted deposition technique and IrO2-based surface catalysis and these photocurrents are unmatched by any other oxide-based photoanode.
Abstract: Revved-up rust! Light-induced water splitting over iron oxide (hematite) has been achieved by using a particle-assisted deposition technique and IrO2-based surface catalysis. Photocurrents in excess of 3 mA cm-2 were obtained at +1.23 V versus the reversible hydrogen electrode under AM 1.5 G 100 mW cm-2 simulated sunlight. These photocurrents are unmatched by any other oxide-based photoanode. FTO=fluorine-doped tin oxide. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Journal ArticleDOI
01 Apr 2010-Carbon
TL;DR: In this article, a mild thermal reduction of graphene oxide (GO) to graphene was achieved with the assistance of microwaves in a mixed solution of N,N-dimethylacetamide and water (DMAc/H2O).

Journal ArticleDOI
TL;DR: Flexible and lightweight chemiresistormade of a thin film composed of overlapped and reduced graphene oxide platelets (RGO film) that can reversibly and selectively detect chemicallyaggressive vapors such asNO.
Abstract: Described herein is a flexible and lightweight chemiresistormade of a thin film composed of overlapped and reducedgraphene oxide platelets (RGO film), which were printedonto flexible plastic surfaces by using inkjet techniques. TheRGO films can reversibly and selectively detect chemicallyaggressivevapors suchasNO

Journal ArticleDOI
01 Apr 2010-Carbon
TL;DR: In this article, a simple approach for the deposition of platinum (Pt) nanoparticles onto surfaces of graphite oxide (GO) nanosheets with particle size in the range of 1-5 nm by ethylene glycol reduction was investigated.

Journal ArticleDOI
TL;DR: The results demonstrated that MnO(2) is effectively utilized with assistance of other components (fFWNTs and poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) in the electrode, and such ternary composite is very promising for the next generation high performance electrochemical supercapacitors.
Abstract: For efficient use of metal oxides, such as MnO2 and RuO2, in pseudocapacitors and other electrochemical applications, the poor conductivity of the metal oxide is a major problem. To tackle the problem, we have designed a ternary nanocomposite film composed of metal oxide (MnO2), carbon nanotube (CNT), and conducting polymer (CP). Each component in the MnO2/CNT/CP film provides unique and critical function to achieve optimized electrochemical properties. The electrochemical performance of the film is evaluated by cyclic voltammetry, and constant-current charge/discharge cycling techniques. Specific capacitance (SC) of the ternary composite electrode can reach 427 F/g. Even at high mass loading and high concentration of MnO2 (60%), the film still showed SC value as high as 200 F/g. The electrode also exhibited excellent charge/discharge rate and good cycling stability, retaining over 99% of its initial charge after 1000 cycles. The results demonstrated that MnO2 is effectively utilized with assistance of ot...

Journal ArticleDOI
03 Sep 2010-ACS Nano
TL;DR: A modified chemical exfoliation technique to prepare large-area graphene oxide (GO) sheets is introduced and it is found that the GO area is strongly correlated with the C-O content of the graphite oxide, which enables the area of the synthesized GO sheets to be controlled.
Abstract: Large-area sheets are highly desirable for fundamental research and technological applications of graphene. Here we introduce a modified chemical exfoliation technique to prepare large-area graphene oxide (GO) sheets. The maximum area of the GO sheets obtained can reach ∼40000 μm2. We found that the GO area is strongly correlated with the C−O content of the graphite oxide, which enables the area of the synthesized GO sheets to be controlled. By simply changing oxidation conditions, GO sheets with an average area of ca. 100−300, ca. 1000−3000, and ∼7000 μm2 were selectively synthesized. For transparent conductive film applications, thin GO films were fabricated by self-assembly on a liquid/air interface and reduced by HI acid. We found that the sheet resistance of the reduced GO (rGO) films decreases with increasing sheet area at the same transmittance because of the decrease in the number of intersheet tunneling barriers. The rGO film made from GO sheets with an average area of ∼7000 μm2 shows a sheet res...

Journal ArticleDOI
14 Oct 2010-ACS Nano
TL;DR: A possible way to fabricate graphene oxide/semiconductor composites with different properties by using a tunable semiconductor conductivity type of graphene oxide is shown.
Abstract: Graphene oxide/TiO2 composites were prepared by using TiCl3 and graphene oxide as reactants. The concentration of graphene oxide in starting solution played an important role in photoelectronic and photocatalytic performance of graphene oxide/TiO2 composites. Either a p-type or n-type semiconductor was formed by graphene oxide in graphene oxide/TiO2 composites. These semiconductors could be excited by visible light with wavelengths longer than 510 nm and acted as sensitizer in graphene oxide/TiO2 composites. Visible-light driven photocatalytic performance of graphene oxide/TiO2 composites in degradation of methyl orange was also studied. Crystalline quality and chemical states of carbon elements from graphene oxide in graphene oxide/TiO2 composites depended on the concentration of graphene oxide in the starting solution. This study shows a possible way to fabricate graphene oxide/semiconductor composites with different properties by using a tunable semiconductor conductivity type of graphene oxide.

Journal ArticleDOI
TL;DR: The electrochemically reduced graphene oxide (ER-G) has shown promising features for applications in energy storage, biosensors, and electrocatalysis as discussed by the authors, which can be used for energy storage.
Abstract: Graphene oxide is electrochemically reduced which is called electrochemically reduced graphene oxide (ER-G). ER-G is characterized with scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, and X-ray diffraction. The oxygen content is significantly decreased and the sp2 carbon is restored after electrochemical reduction. ER-G exhibits much higher electrochemical capacitance and cycling durability than carbon nanotubes (CNTs) and chemically reduced graphene; the specific capacitance measured with cyclic voltammetry (20 mV s−1) is ∼165, ∼86, and ∼100 F g−1 for ER-G, CNTs, and chemically reduced graphene, respectively. The electrochemical reduction of oxygen and hydrogen peroxide are greatly enhanced on ER-G electrodes as compared with CNTs. ER-G has shown promising features for applications in energy storage, biosensors, and electrocatalysis.

Journal ArticleDOI
TL;DR: In this paper, a facile single-step photocatalytic reaction was used to improve the photoresponse of BiVO4 with reduced graphene oxide (RGO) for photoelectrochemical water splitting.
Abstract: Bismuth vanadate (BiVO4) is incorporated with reduced graphene oxide (RGO) using a facile single-step photocatalytic reaction to improve its photoresponse in visible light. Remarkable 10-fold enhancement in photoelectrochemical water splitting reaction is observed on BiVO4−RGO composite compared with pure BiVO4 under visible illumination. This improvement is attributed to the longer electron lifetime of excited BiVO4 as the electrons are injected to RGO instantly at the site of generation, leading to a minimized charge recombination. Improved contact between BiVO4 particles with transparent conducting electrode using RGO scaffold also contributes to this photoresponse enhancement.

Journal ArticleDOI
26 Jan 2010-ACS Nano
TL;DR: The search for materials that can replace tin-doped indium oxide as the leading transparent conductive electrode (TCE) has intensified significantly in the past few years, motivated by the ever-increasing price of indium.
Abstract: The search for materials that can replace tin-doped indium oxide (ITO) as the leading transparent conductive electrode (TCE) has intensified significantly in the past few years, motivated by the ever-increasing price of indium. Materials such as carbon nanotube (CNT) films, graphene films, metal nanowire gratings, and random networks have been at the forefront of research in this direction. A paper by Wu et al. in this issue discusses the use of solution-processed graphene as the TCE in organic light-emitting devices. Advantages such as large-scale fabrication at relatively less expense, compatibility with flexible substrates, and improving performance have significantly contributed to their case as potential candidates for TCEs. Demonstrations of various display and photovoltaic devices using TCEs made of these materials, with performances rivaling those employing ITO, have provided the research community with encouragement to explore new materials and to address the associated scientific and technologic...

Journal ArticleDOI
TL;DR: The observation of a giant-infrared-absorption band in reduced graphene oxide is reported, arising from the coupling of electronic states to the asymmetric stretch mode of a yet-unreported structure, consisting of oxygen atoms aggregated at the edges of defects.
Abstract: Infrared absorption of atomic and molecular vibrations in solids can be affected by electronic contributions through non-adiabatic interactions, such as the Fano effect. Typically, the infrared-absorption lineshapes are modified, or infrared-forbidden modes are detectable as a modulation of the electronic absorption. In contrast to such known phenomena, we report here the observation of a giant-infrared-absorption band in reduced graphene oxide, arising from the coupling of electronic states to the asymmetric stretch mode of a yet-unreported structure, consisting of oxygen atoms aggregated at the edges of defects. Free electrons are induced by the displacement of the oxygen atoms, leading to a strong infrared absorption that is in phase with the phonon mode. This new phenomenon is only possible when all other oxygen-containing chemical species, including hydroxyl, carboxyl, epoxide and ketonic functional groups, are removed from the region adjacent to the edges, that is, clean graphene patches are present.

Journal ArticleDOI
19 May 2010-ACS Nano
TL;DR: The results indicate that GO could be a simple solution-processable alternative to PEDOT:PSS as the effective hole transport and electron blocking layer in OPV and light-emitting diode devices.
Abstract: The utilization of graphene oxide (GO) thin films as the hole transport and electron blocking layer in organic photovoltaics (OPVs) is demonstrated. The incorporation of GO deposited from neutral solutions between the photoactive poly(3-hexylthiophene) (P3HT):phenyl-C61-butyric acid methyl ester (PCBM) layer and the transparent and conducting indium tin oxide (ITO) leads to a decrease in recombination of electrons and holes and leakage currents. This results in a dramatic increase in the OPV efficiencies to values that are comparable to devices fabricated with PEDOT:PSS as the hole transport layer. Our results indicate that GO could be a simple solution-processable alternative to PEDOT:PSS as the effective hole transport and electron blocking layer in OPV and light-emitting diode devices.

Journal ArticleDOI
TL;DR: This critical review presents an overview of the various classes of oxide materials exhibiting fast oxide-ion or proton conductivity for use as solid electrolytes in clean energy applications such as solid oxide fuel cells.
Abstract: This critical review presents an overview of the various classes of oxide materials exhibiting fast oxide-ion or proton conductivity for use as solid electrolytes in clean energy applications such as solid oxide fuel cells. Emphasis is placed on the relationship between structural and mechanistic features of the crystalline materials and their ion conduction properties. After describing well-established classes such as fluorite- and perovskite-based oxides, new materials and structure-types are presented. These include a variety of molybdate, gallate, apatite silicate/germanate and niobate systems, many of which contain flexible structural networks, and exhibit different defect properties and transport mechanisms to the conventional materials. It is concluded that the rich chemistry of these important systems provides diverse possibilities for developing superior ionic conductors for use as solid electrolytes in fuel cells and related applications. In most cases, a greater atomic-level understanding of the structures, defects and conduction mechanisms is achieved through a combination of experimental and computational techniques (217 references).

Journal ArticleDOI
01 Jan 2010-Science
TL;DR: A family of solid catalysts that can stabilize water-oil emulsions and catalyze reactions at the liquid/liquid interface is reported, demonstrating biphasic hydrodeoxygenation and condensation catalysis in three substrate classes of interest in biomass refining.
Abstract: A recoverable catalyst that simultaneously stabilizes emulsions would be highly advantageous in streamlining processes such as biomass refining, in which the immiscibility and thermal instability of crude products greatly complicates purification procedures. Here, we report a family of solid catalysts that can stabilize water-oil emulsions and catalyze reactions at the liquid/liquid interface. By depositing palladium onto carbon nanotube-inorganic oxide hybrid nanoparticles, we demonstrate biphasic hydrodeoxygenation and condensation catalysis in three substrate classes of interest in biomass refining. Microscopic characterization of the emulsions supports localization of the hybrid particles at the interface.