scispace - formally typeset
Search or ask a question

Showing papers on "Slip (materials science) published in 2004"


Journal ArticleDOI
TL;DR: The influence of the grain size on the flow stress of extruded Mg-3Al-1Zn tested in compression is examined in this paper, where samples with grain sizes varying between 3 and 23 μm were prepared by altering the extrusion conditions.

1,160 citations


Journal ArticleDOI
TL;DR: It is shown, using molecular dynamics simulations, that the nature of slip in nanocrystalline metals cannot be described in terms of the absolute value of the stacking fault energy—a correct interpretation requires the generalized stacking faultEnergy curve, involving both stable and unstable stacking fault energies.
Abstract: The search for deformation mechanisms in nanocrystalline metals has profited from the use of molecular dynamics calculations. These simulations have revealed two possible mechanisms; grain boundary accommodation, and intragranular slip involving dislocation emission and absorption at grain boundaries. But the precise nature of the slip mechanism is the subject of considerable debate, and the limitations of the simulation technique need to be taken into consideration. Here we show, using molecular dynamics simulations, that the nature of slip in nanocrystalline metals cannot be described in terms of the absolute value of the stacking fault energy-a correct interpretation requires the generalized stacking fault energy curve, involving both stable and unstable stacking fault energies. The molecular dynamics technique does not at present allow for the determination of rate-limiting processes, so the use of our calculations in the interpretation of experiments has to be undertaken with care.

869 citations


Journal ArticleDOI
TL;DR: In this article, the authors argue that key features of thrust earthquake triggering, inhibition, and clustering can be explained by Coulomb stress changes, which illustrate by a suite of representative models and by detailed examples.
Abstract: [1] We argue that key features of thrust earthquake triggering, inhibition, and clustering can be explained by Coulomb stress changes, which we illustrate by a suite of representative models and by detailed examples. Whereas slip on surface-cutting thrust faults drops the stress in most of the adjacent crust, slip on blind thrust faults increases the stress on some nearby zones, particularly above the source fault. Blind thrusts can thus trigger slip on secondary faults at shallow depth and typically produce broadly distributed aftershocks. Short thrust ruptures are particularly efficient at triggering earthquakes of similar size on adjacent thrust faults. We calculate that during a progressive thrust sequence in central California the 1983 Mw = 6.7 Coalinga earthquake brought the subsequent 1983 Mw = 6.0 Nunez and 1985 Mw = 6.0 Kettleman Hills ruptures 10 bars and 1 bar closer to Coulomb failure. The idealized stress change calculations also reconcile the distribution of seismicity accompanying large subduction events, in agreement with findings of prior investigations. Subduction zone ruptures are calculated to promote normal faulting events in the outer rise and to promote thrust-faulting events on the periphery of the seismic rupture and its downdip extension. These features are evident in aftershocks of the 1957 Mw = 9.1 Aleutian and other large subduction earthquakes. We further examine stress changes on the rupture surface imparted by the 1960 Mw = 9.5 and 1995 Mw = 8.1 Chile earthquakes, for which detailed slip models are available. Calculated Coulomb stress increases of 2–20 bars correspond closely to sites of aftershocks and postseismic slip, whereas aftershocks are absent where the stress drops by more than 10 bars. We also argue that slip on major strike-slip systems modulates the stress acting on nearby thrust and strike-slip faults. We calculate that the 1857 Mw = 7.9 Fort Tejon earthquake on the San Andreas fault and subsequent interseismic slip brought the Coalinga fault ∼1 bar closer to failure but inhibited failure elsewhere on the Coast Ranges thrust faults. The 1857 earthquake also promoted failure on the White Wolf reverse fault by 8 bars, which ruptured in the 1952 Mw = 7.3 Kern County shock but inhibited slip on the left-lateral Garlock fault, which has not ruptured since 1857. We thus contend that stress transfer exerts a control on the seismicity of thrust faults across a broad spectrum of spatial and temporal scales.

755 citations


Journal ArticleDOI
TL;DR: In this article, the authors use a geometric classification of damage zones into tip-, wall-, and linking-damage zones, based on their location around faults, which can be sub-divided in terms of fault and fracture patterns within the damage zone.

678 citations


Journal ArticleDOI
TL;DR: In this article, the authors estimate the distribution of interseismic coupling on the subduction zone interface beneath the North Island and the kinematics of the tectonic block rotations.
Abstract: [1] The GPS velocity field in the North Island of New Zealand is dominated by the long-term tectonic rotation of the eastern North Island and elastic strain from stress buildup on the subduction zone thrust fault. We simultaneously invert GPS velocities, earthquake slip vectors, and geological fault slip rates in the North Island for the angular velocities of elastic crustal blocks and the spatially variable degree of coupling on faults separating the blocks. This approach allows us to estimate the distribution of interseismic coupling on the subduction zone interface beneath the North Island and the kinematics of the tectonic block rotations. In agreement with previous studies we find that the subduction zone interface beneath the southern North Island has a high slip rate deficit during the interseismic period, and the slip rate deficit decreases northward along the margin. Much of the North Island is rotating as several, distinct tectonic blocks (clockwise at 0.5-3.8 deg Myr -1 ) about nearby axes relative to the Australian Plate. This rotation accommodates much of the margin-parallel component of motion between the Pacific and Australian plates. On the basis of our estimation of the block kinematics we suggest that rotation of the eastern North Island occurs because of the southward increasing thickness of the subducting Hikurangi Plateau. These results have implications for our understanding of convergent margin plate boundary zones around the world, particularly with regard to our knowledge of mechanisms for rapid tectonic block rotations at convergent margins and the role of block rotations in the slip partitioning process.

584 citations


Journal ArticleDOI
29 Jan 2004-Nature
TL;DR: Data on quartz rocks are reported that indicate an extraordinary progressive decrease in frictional resistance with increasing slip velocity above 1 mm s-1, and appears to be due to the formation of a thin layer of silica gel on the fault surface, which may explain the low strength of major faults during earthquakes.
Abstract: An important unsolved problem in earthquake mechanics is to determine the resistance to slip on faults in the Earth's crust during earthquakes. Knowledge of coseismic slip resistance is critical for understanding the magnitude of shear-stress reduction and hence the near-fault acceleration that can occur during earthquakes, which affects the amount of damage that earthquakes are capable of causing. In particular, a long-unresolved problem is the apparently low strength of major faults, which may be caused by low coseismic frictional resistance. The frictional properties of rocks at slip velocities up to 3 mm s(-1) and for slip displacements characteristic of large earthquakes have been recently simulated under laboratory conditions. Here we report data on quartz rocks that indicate an extraordinary progressive decrease in frictional resistance with increasing slip velocity above 1 mm s(-1). This reduction extrapolates to zero friction at seismic slip rates of approximately 1 m s(-1), and appears to be due to the formation of a thin layer of silica gel on the fault surface: it may explain the low strength of major faults during earthquakes.

534 citations


Journal ArticleDOI
TL;DR: A transition from stick-slip to continuous sliding is observed for atomically modulated friction by means of a friction force microscope and the results are compared to a recently discussed concept called superlubricity.
Abstract: A transition from stick-slip to continuous sliding is observed for atomically modulated friction by means of a friction force microscope. When the stick-slip instabilities cease to exist, a new regime of ultralow friction is encountered. The transition is described in the framework of the Tomlinson model using a parameter eta which relates the strength of the lateral atomic surface potential and the stiffness of the contact under study. Experimentally, this parameter can be tuned by varying the normal load on the contact. We compare our results to a recently discussed concept called superlubricity.

484 citations


Journal ArticleDOI
TL;DR: In this article, the crustal tilt deformation was observed repeatedly with a recurrence interval of approximately six months coincident with the occurrences of major nonvolcanic deep tremor activities in this area.
Abstract: [1] Episodic slow slip events have been recognized by means of tilt changes in the western Shikoku area, southwest Japan. The crustal tilt deformation was observed repeatedly with a recurrence interval of approximately six months coincident with the occurrences of major non-volcanic deep tremor activities in this area. Observed tilt changes can be explained by slow slip events occurring around the source area of tremors. In each episode, the source of the slow slip event and tremor migrate simultaneously. The spatial and temporal coincidence of tremors and slow slip events indicates that they both may be coupling phenomena reflecting the stress accumulation process at the subducting plate.

425 citations


Journal ArticleDOI
TL;DR: In this article, the authors evaluate the effect of coseismic stress changes on the fault slip at midcrustal depth, assuming a velocity-strengthening brittle creep rheology, and show that this model can help reconcile the time evolution of afterslip, as measured from geodesy, with aftershocks decay.
Abstract: We evaluate the effect of coseismic stress changes on the fault slip at midcrustal depth, assuming a velocity-strengthening brittle creep rheology. We show that this model can help reconcile the time evolution of afterslip, as measured from geodesy, with aftershocks decay. We propose an analytical expression for slip of the brittle creeping fault zone (BCFZ) that applies to any dynamic or static stress perturbation, including shear stress and normal stress changes. The model predicts an initial logarithmic increase of slip with time. Postseismic slip rate decays over a characteristic time t_r = aσ/τ that does not depend on the amplitude of the stress perturbation, and it asymptotically joins the long-term creep imposed by interseismic stress buildup τ. Given that the seismicity rate might be considered proportional to the sliding velocity of the BCFZ, the model predicts a decay rate of aftershocks that follows Omori's law, with a mathematical formalism identical to that of Dieterich [1994] although based on a different mechanical rationale. Our model also differs from Dieterich's model in that it requires that aftershock sequences and deep afterslip, as constrained from geodetic measurements, should follow the same temporal evolution. We test this for the 1999 Chi-Chi earthquake, M_w = 7.6 and find that both sets of data are consistent with a model of afterslip due to the response of the BCFZ. The inferred relaxation time t_r = 8.5 years requires a value for a = ∂μ/∂log(V) (μ being the coefficient of friction) in the range between 1.3 10^(−3) and 10^(−2).

415 citations


Journal ArticleDOI
26 Aug 2004-Nature
TL;DR: It is shown that the onset of frictional slip is governed by three different types of coherent crack-like fronts: these are observed by real-time visualization of the net contact area that forms the interface separating two blocks of like material.
Abstract: The dynamics of friction have been studied for hundreds of years, yet many aspects of these everyday processes are not understood. One such aspect is the onset of frictional motion (slip). First described more than 200 years ago as the transition from static to dynamic friction, the onset of slip is central to fields as diverse as physics1,2,3, tribology4,5, mechanics of earthquakes6,7,8,9,10,11 and fracture12,13,14. Here we show that the onset of frictional slip is governed by three different types of coherent crack-like fronts: these are observed by real-time visualization of the net contact area that forms the interface separating two blocks of like material. Two of these fronts, which propagate at subsonic and intersonic velocities, have been the subject of intensive recent interest12,13,14,15,16,17. We show that a third type of front, which propagates an order of magnitude more slowly, is the dominant mechanism for the rupture of the interface. No overall motion (sliding) of the blocks occurs until either of the slower two fronts traverses the entire interface.

388 citations


Journal ArticleDOI
28 May 2004-Science
TL;DR: In this paper, the authors detected a cause of the Tokai silent slip, which occurred at a presumed fault zone of a great earthquake using seismic imaging, and they proposed that these structures effectively extend a region of conditionally stable slips and consequently generate the silent slip.
Abstract: Silent-slip events have been detected at several subduction zones, but the cause of these events is unknown. Using seismic imaging, we detected a cause of the Tokai silent slip, which occurred at a presumed fault zone of a great earthquake. The seismic image that we obtained shows a zone of high pore fluid pressure in the subducted oceanic crust located down-dip of a subducted ridge. We propose that these structures effectively extend a region of conditionally stable slips and consequently generate the silent slip.

Journal ArticleDOI
TL;DR: In this paper, the deformation anisotropy of extruded Mg-6% Al-1% Zn alloy has been investigated on specimens with different tilt angles relative to the extrusion direction.
Abstract: Deformation anisotropy of extruded Mg–6% Al–1% Zn alloy has been investigated on specimens with different tilt angles relative to the extrusion direction. Calculations of the orientation factors for basal slip and of the strains caused by {1 0 1 2} twinning were done for a slightly idealised texture. This quantification of the two dominating deformation modes was used to explain the marked mechanical anisotropy of the extruded magnesium alloy. Basal slip as well as {1 0 1 2} twinning is inhibited in extrusion direction under tensile loads, which results in high yield strength. Any other testing direction and/or compressive loads are capable of activating slip and/or twinning and yield stress is significantly lower under such conditions. The lattice reorientation of 86.3° caused by twinning has a large influence on the deformation behaviour of a pre-deformed specimen, since the twinned areas are capable of untwinning during reloading in the opposite direction.

01 Jan 2004
TL;DR: Using seismic imaging, the cause of the Tokai silent slip is detected, which occurred at a presumed fault zone of a great earthquake, and it is proposed that these structures effectively extend a region of conditionallystable slips and consequently generate the silent slip.
Abstract: Silent-slip events have been detected at several subduction zones, but the cause of these events is unknown. Using seismic imaging, we detected a cause of the Tokai silent slip, which occurred at a presumed fault zone of a great earthquake. The seismic image that we obtained shows a zone of high pore fluid pressure in the subducted oceanic crust located down-dip of a subducted ridge. We propose that these structures effectivelyextend a region of conditionallystable slips and consequently generate the silent slip.

Journal ArticleDOI
TL;DR: In this paper, the authors used a viscoplastic Taylor model based on different combinations of four slip modes and one twinning mode to model the texture of the magnesium alloy AZ31.

Journal ArticleDOI
TL;DR: In this paper, the second part of a two-part study, the authors report on the mechanical behavior of Ti3SiC2 in simple compression and flexure tests, and compared the results with those of coarse-grained (100-200 μm) Ti3 SiC2.
Abstract: In this article, the second part of a two-part study, we report on the mechanical behavior of Ti3SiC2. In particular, we have evaluated the mechanical response of fine-grained (3–5 μm) Ti3SiC2 in simple compression and flexure tests, and we have compared the results with those of coarse-grained (100–200 μm) Ti3SiC2. These tests have been conducted in the 25°–1300°C temperature range. At ambient temperature, the fine- and coarse-grained microstructures exhibit excellent damage-tolerant properties. In both cases, failure is brittle up to ∼1200°C. At 1300°C, both microstructures exhibit plastic deformation (>20%) in flexure and compression. The fine-grained material exhibits higher strength compared with the coarse-grained material at all temperatures. Although the coarse-grained material is not susceptible to thermal shock (up to 1400°C), the fine-grained material thermally shocks gradually between 750° and 1000°C. The results presented herein provide evidence for two important aspects of the mechanical behavior of Ti3SiC2: (i) inelastic deformation entails basal slip and damage formation in the form of voids, grain-boundary cracks, kinking, and delamination of individual grains, and (ii) the initiation of damage does not result in catastrophic failure, because Ti3SiC2 can confine the spatial extent of the damage.

Journal ArticleDOI
TL;DR: In this paper, a strain gradient-dependent crystal plasticity approach is presented to model the constitutive behaviour of polycrystal FCC metals under large plastic deformation, and the resulting boundary value problem accommodates, in addition to the ordinary stress equilibrium condition, a condition which sets the additional nodal degrees of freedom, the edge and screw GND densities, proportional (in a weak sense) to the gradients of crystalline slip.
Abstract: A strain gradient-dependent crystal plasticity approach is presented to model the constitutive behaviour of polycrystal FCC metals under large plastic deformation. In order to be capable of predicting scale dependence, the heterogeneous deformation-induced evolution and distribution of geometrically necessary dislocations (GNDs) are incorporated into the phenomenological continuum theory of crystal plasticity. Consequently, the resulting boundary value problem accommodates, in addition to the ordinary stress equilibrium condition, a condition which sets the additional nodal degrees of freedom, the edge and screw GND densities, proportional (in a weak sense) to the gradients of crystalline slip. Next to this direct coupling between microstructural dislocation evolutions and macroscopic gradients of plastic slip, another characteristic of the presented crystal plasticity model is the incorporation of the GND-effect, which leads to an essentially different constitutive behaviour than the statistically stored dislocation (SSD) densities. The GNDs, by their geometrical nature of locally similar signs, are expected to influence the plastic flow through a non-local back-stress measure, counteracting the resolved shear stress on the slip systems in the undeformed situation and providing a kinematic hardening contribution. Furthermore, the interactions between both SSD and GND densities are subject to the formation of slip system obstacle densities and accompanying hardening, accountable for slip resistance. As an example problem and without loss of generality, the model is applied to predict the formation of boundary layers and the accompanying size effect of a constrained strip under simple shear deformation, for symmetric double-slip conditions.

Journal ArticleDOI
TL;DR: In this article, the shape memory effect and superelastic behavior were observed at room temperature in the Ti-(22-25)at%Nb alloys and Ti-(25.5-27)at%)Nb alloy, respectively.
Abstract: Mechanical properties and shape memory behavior of Ti-(20–29)at%Nb alloys were investigated in order to develop Ni-free biomedical shape memory alloys. The Ti-Nb alloys were fabricated by arc melting method. The ingots were cold-rolled with a reduction up to 95% in thickness and then solution treated at 1173 K for 1.8 ks. The martensitic transformation temperature decreased by 43 K per 1 at% increase of Nb content. The shape memory effect and superelastic behavior were observed at room temperature in the Ti-(22–25)at%Nb alloys and Ti-(25.5– 27)at%Nb alloys, respectively. A small enthalpy of the martensitic transformation and a large difference between Ms and Mf were observed in the Ti-Nb alloys compared to Ti-Ni shape memory alloys. The maximum recovered strain of 3% was obtained at room temperature in solution treated Ti-(25–27)at%Nb alloys. The heat treatment at 573 K for 3.6 ks stabilized superelastic behavior of Ti-Nb alloys by increasing the critical stress for slip.

Journal ArticleDOI
04 Mar 2004-Nature
TL;DR: Martensitic transformations are diffusionless, solid-to-solid phase transitions, and have been observed in metals, alloys, ceramics and proteins, characterized by a rapid change of crystal structure accompanied by the development of a rich microstructure.
Abstract: Martensitic transformations are diffusionless, solid-to-solid phase transitions, and have been observed in metals, alloys, ceramics and proteins. They are characterized by a rapid change of crystal structure, accompanied by the development of a rich microstructure. Martensitic transformations can be irreversible, as seen in steels upon quenching, or they can be reversible, such as those observed in shape-memory alloys. In the latter case, the microstructures formed on cooling are easily manipulated by loads and disappear upon reheating. Here, using mathematical theory and numerical simulation, we explain these sharp differences in behaviour on the basis of the change in crystal symmetry during the transition. We find that a necessary condition for reversibility is that the symmetry groups of the parent and product phases be included in a common finite symmetry group. In these cases, the energy barrier to lattice-invariant shear is generically higher than that pertaining to the phase change and, consequently, transformations of this type can occur with virtually no plasticity. Irreversibility is inevitable in all other martensitic transformations, where the energy barrier to plastic deformation (via lattice-invariant shears, as in twinning or slip) is no higher than the barrier to the phase change itself. Various experimental observations confirm the importance of the symmetry of the stable states in determining the macroscopic reversibility of martensitic transformations.

Journal ArticleDOI
TL;DR: In this article, the authors employed atomic simulations to compute the resistance to glide posed by two kinds of interfaces: coherent and semicoherent interfaces, and incoherent interfaces offer significant resistance to crossing of glide dislocations but for different reasons.

Journal ArticleDOI
TL;DR: In this paper, the authors examined a possible mechanism for the measured fluid slip, for water flowing over a hydrophobic surface, by modeling the presence of either a depleted water layer or nanobbles as an effective air gap at the wall, calculate slip lengths for flow between two infinite parallel plates.
Abstract: Fluid slip has been observed experimentally in micro- and nanoscale flow devices by several investigators [e.g., Tretheway and Meinhart, Phys. Fluids 14, L9 (2002); Zhu and Granik, Phys. Rev. Lett. 87, 096105 (2001); Pit et al., Phys. Rev. Lett. 85, 980 (2000); and Choi et al., Phys. Fluids 15, 2897 (2003)]. This paper examines a possible mechanism for the measured fluid slip, for water flowing over a hydrophobic surface. We extend the work of Lum et al. [J. Phys. Chem. B 103, 4570 (1999)], Zhu and Granick [Phys. Rev. Lett. 87, 096105 (2001)], Granick et al. [Nature Materials 2, 221 (2003)], and de Gennes [Langmuir 18, 3413 (2002)], who suggest slip develops from a depleted water region or vapor layer near a hydrophobic surface. By modeling the presence of either a depleted water layer or nanobubbles as an effective air gap at the wall, we calculate slip lengths for flow between two infinite parallel plates. The calculated slip lengths are consistent with experimental values when the gas layer is modeled as a continuum and significantly higher when rarefied gas conditions are assumed. The results suggest that the apparent fluid slip observed experimentally at hydrophobic surfaces may arise from either the presence of nanobubbles or a layer of low density fluid at the surface.

Journal ArticleDOI
09 Jul 2004-Science
TL;DR: Surface displacement measurements across the western Tibetan plateau using satellite radar interferometry (InSAR) indicate that slip rates on the Karakoram and Altyn Tagh faults are lower than would be expected for the extrusion model and suggest a significant amount of internal deformation in Tibet.
Abstract: Two contrasting views of the active deformation of Asia dominate the debate about how continents deform: (i) The deformation is primarily localized on major faults separating crustal blocks or (ii) deformation is distributed throughout the continental lithosphere. In the first model, western Tibet is being extruded eastward between the major faults bounding the region. Surface displacement measurements across the western Tibetan plateau using satellite radar interferometry (InSAR) indicate that slip rates on the Karakoram and Altyn Tagh faults are lower than would be expected for the extrusion model and suggest a significant amount of internal deformation in Tibet.

Journal ArticleDOI
TL;DR: In this paper, the geometrically nonlinear scale dependent response of polycrystal FCC metals is modelled by an enhanced crystal plasticity framework based on the evolution of several dislocation density types and their distinct physical influence on the mechanical behaviour.

Journal ArticleDOI
TL;DR: A macroscopic estimate of the effective slip length on the basis of continuum hydrodynamics, in order to rationalize the previous MD results and propose some guidelines to design highly slippery surfaces, motivated by potential applications in microfluidics.
Abstract: In this paper we consider the effect of surface heterogeneity on the slippage of fluid, using two complementary approaches. First, MD simulations of a corrugated hydrophobic surface have been performed. A dewetting transition, leading to a super-hydrophobic state, is observed for pressure below a “capillary” pressure. Conversely, a very large slippage of the fluid on this composite interface is found in this super-hydrophobic state. Second, we propose a macroscopic estimate of the effective slip length on the basis of continuum hydrodynamics, in order to rationalize the previous MD results. This calculation allows to estimate the effect of a heterogeneous slip length pattern at the composite interface. Comparison between the two approaches shows that they are in good agreement at low pressure, but highlights the role of the exact shape of the liquid-vapor interface at higher pressure. These results confirm that small variations in the roughness of a surface can lead to huge differences in the slip effect. On the basis of these results, we propose some guidelines to design highly slippery surfaces, motivated by potential applications in microfluidics.

Journal ArticleDOI
TL;DR: In this paper, a set of evolution equations for dislocation density was developed incorporating the combined evolution of statistically stored and geometrically necessary densities, and the statistical density evolves through Burgers vector-conserving reactions based in dislocation mechanics.
Abstract: A set of evolution equations for dislocation density is developed incorporating the combined evolution of statistically stored and geometrically necessary densities. The statistical density evolves through Burgers vector-conserving reactions based in dislocation mechanics. The geometric density evolves due to the divergence of dislocation fluxes associated with the inhomogeneous nature of plasticity in crystals. Integration of the density-based model requires additional dislocation density/density-flux boundary conditions to complement the standard traction/displacement boundary conditions. The dislocation density evolution equations and the coupling of the dislocation density flux to the slip deformation in a continuum crystal plasticity model are incorporated into a finite element model. Simulations of an idealized crystal with a simplified slip geometry are conducted to demonstrate the length scale-dependence of the mechanical behavior of the constitutive model. The model formulation and simulation results have direct implications on the ability to explicitly model the interaction of dislocation densities with grain boundaries and on the net effect of grain boundaries on the macroscopic mechanical response of polycrystals.

Journal ArticleDOI
TL;DR: It is shown that these "Maxwell-Burnett" boundary conditions are in reasonable agreement with the limited experimental data available for Poiseuille flow and can also predict Sone's thermal-stress slip flow-a phenomenon which cannot be captured by conventional slip boundary conditions.
Abstract: Maxwell's famous slip boundary condition is often misapplied in current rarefied gas flow calculations (e.g., in hypersonics, microfluidics). For simulations of gas flows over curved or moving surfaces, this means crucial physics can be lost. We give examples of such cases. We also propose a higher-order boundary condition based on Maxwell's general equation and the constitutive relations derived by Burnett. Unlike many other higher-order slip conditions these are applicable to any form of surface geometry. It is shown that these "Maxwell-Burnett" boundary conditions are in reasonable agreement with the limited experimental data available for Poiseuille flow and can also predict Sone's thermal-stress slip flow - a phenomenon which cannot be captured by conventional slip boundary conditions.

Journal ArticleDOI
TL;DR: In this article, it was shown that slip is characterized by universal scaling properties, which depend on solvent viscosity, bulk shear modulus, and particle size, and a model based on elastohydrodynamic lubrication between the squeezed particles and the shearing surface.
Abstract: Microgel pastes and concentrated emulsions are shown to exhibit a generic slip behavior at low stresses when sheared near smooth surfaces. The magnitude of slip depends on the applied stress. Well above the yield stress, slip is negligible compared to the bulk flow. Just above the yield stress, slip becomes significant and the total deformation results from a combination of bulk flow and slip. At and below the yield stress, the bulk flow is negligible and the apparent motion is entirely due to wall slip. By directly imaging the deformation of pastes and from rheological measurements, we show that slip is characterized by universal scaling properties, which depend on solvent viscosity, bulk shear modulus, and particle size. A model based on elastohydrodynamic lubrication between the squeezed particles and the shearing surface explains these properties quantitatively.

Journal ArticleDOI
TL;DR: It is suggested that catch bonds contribute to the shear threshold for rolling and are a common characteristic of selectin-ligand interactions.

01 Nov 2004
TL;DR: In this paper, the effects of hydrophobic surface on skin-friction drag were investigated through direct numerical simulations of a turbulent channel flow and it was found that the slip length must be greater than a certain value in order to have a noticeable effect on turbulence.
Abstract: Effects of hydrophobic surface on skin-friction drag are investigated through direct numerical simulations of a turbulent channel flow. Hydrophobic surface is represented by a slip-boundary condition on the surface. When a slip-boundary condition is used in the streamwise direction, the skin-friction drag decreases and turbulence intensities and turbulence structures, near-wall streamwise vortices in particular, are significantly weakened. When a slip-boundary condition is used in the spanwise direction, on the other hand, the drag is increased. It is found that near-wall turbulence structures are modified differently, resulting in drag increase. It is also found that the slip length must be greater than a certain value in order to have a noticeable effect on turbulence. An important implication of the present finding is that drag reduction in turbulent boundary layers is unlikely with hydrophobic surface with its slip length on the order of a submicron scale.

Journal ArticleDOI
TL;DR: In this article, an instability criterion based on bifurcation analysis is incorporated into the finite element calculation to predict homogeneous dislocation nucleation, which is superior to that based on the critical resolved shear stress in terms of its accuracy of prediction for both the nucleation site and slip character of the defect.
Abstract: Nanoscale contact of material surfaces provides an opportunity to explore and better understand the elastic limit and incipient plasticity in crystals. Homogeneous nucleation of a dislocation beneath a nanoindenter is a strain localization event triggered by elastic instability of the perfect crystal at finite strain. The finite element calculation, with a hyperelastic constitutive relation based on an interatomic potential, is employed as an efficient method to characterize such instability. This implementation facilitates the study of dislocation nucleation at length scales that are large compared to atomic dimensions, while remaining faithful to the nonlinear interatomic interactions. An instability criterion based on bifurcation analysis is incorporated into the finite element calculation to predict homogeneous dislocation nucleation. This criterion is superior to that based on the critical resolved shear stress in terms of its accuracy of prediction for both the nucleation site and the slip character of the defect. Finite element calculations of nanoindentation of single crystal copper by a cylindrical indenter and predictions of dislocation nucleation are validated by comparing with direct molecular dynamics simulations governed by the same interatomic potential. Analytic 2D and 3D linear elasticity solutions based on the Stroh formalism are used to benchmark the finite element results. The critical configuration of homogeneous dislocation nucleation under a spherical indenter is quantified with full 3D finite element calculations. The prediction of the nucleation site and slip character is verified by direct molecular dynamics simulations. The critical stress state at the nucleation site obtained from the interatomic potential is in quantitative agreement with ab initio density functional theory calculation.

Journal ArticleDOI
TL;DR: In this article, a polycrystal plasticity finite element model was developed for nickel-base alloy C263 and a fatigue crack initiation criterion was proposed, based simply on a critical accumulated slip.
Abstract: A polycrystal plasticity finite–element model has been developed for nickel–base alloy C263. That is, a representative region of the material, containing about 60 grains, has been modelled using crystal plasticity, taking account of grain morphology and crystallographic orientation. With just a single material property (in addition to standard elastic properties), namely, the critical resolved shear stress, the model is shown to be capable of predicting correctly a wide range of cyclic plasticity behaviour in face–centred cubic nickel alloy C263. A fatigue crack initiation criterion is proposed, based simply on a critical accumulated slip. When this critical slip is achieved within the microstructure, crack initiation is taken to have occurred. The model predicts the development of persistent slip bands within individual grains with a width of ca. 10 μm. The model also predicts that crack initiation can occur preferentially at grain triple points under both low– (LCF) and high–cycle fatigue (HCF). For the case of HCF, this also corresponds to a free surface. The polycrystal plasticity model combined with the fatigue crack initiation criterion are shown to predict correctly the standard Basquin and Goodman correlations in HCF, and the Coffin–Manson correlation in LCF. The model predictions are based on just two material properties: the critical resolved shear stress and the critical accumulated slip. Just one experimental test is required to determine these properties, for a given temperature, which have been obtained for nickel alloy C263. Predictions of life for nickel alloy C263 are then made over a broad range of loading conditions covering both LCF and HCF. Good agreement with experiments is achieved, despite the simplicity of the proposed ‘two–parameter’ model. A simple three–dimensional form of the model has provided an estimate of the fatigue limit for HCF crack initiation in C263.