scispace - formally typeset
Search or ask a question

Showing papers on "Temporal cortex published in 2009"


Journal ArticleDOI
TL;DR: Depression is characterized by both stimulus-induced heightened activity and a failure to normally down-regulate activity broadly within the DMN, and these findings provide a brain network framework within which to consider the pathophysiology of depression.
Abstract: The recently discovered default mode network (DMN) is a group of areas in the human brain characterized, collectively, by functions of a self-referential nature. In normal individuals, activity in the DMN is reduced during nonself-referential goal-directed tasks, in keeping with the folk-psychological notion of losing one's self in one's work. Imaging and anatomical studies in major depression have found alterations in both the structure and function in some regions that belong to the DMN, thus, suggesting a basis for the disordered self-referential thought of depression. Here, we sought to examine DMN functionality as a network in patients with major depression, asking whether the ability to regulate its activity and, hence, its role in self-referential processing, was impaired. To do so, we asked patients and controls to examine negative pictures passively and also to reappraise them actively. In widely distributed elements of the DMN [ventromedial prefrontal cortex prefrontal cortex (BA 10), anterior cingulate (BA 24/32), lateral parietal cortex (BA 39), and lateral temporal cortex (BA 21)], depressed, but not control subjects, exhibited a failure to reduce activity while both looking at negative pictures and reappraising them. Furthermore, looking at negative pictures elicited a significantly greater increase in activity in other DMN regions (amygdala, parahippocampus, and hippocampus) in depressed than in control subjects. These data suggest depression is characterized by both stimulus-induced heightened activity and a failure to normally down-regulate activity broadly within the DMN. These findings provide a brain network framework within which to consider the pathophysiology of depression.

1,245 citations


Journal ArticleDOI
TL;DR: These subdivisions within the precuneus suggest that neuroimaging studies will benefit from treating this region as anatomically (and thus functionally) heterogeneous, and provide support that resting-state functional connectivity (RSFC) may in part reflect underlying anatomy.
Abstract: Evidence from macaque monkey tracing studies suggests connectivity-based subdivisions within the precuneus, offering predictions for similar subdivisions in the human. Here we present functional connectivity analyses of this region using resting-state functional MRI data collected from both humans and macaque monkeys. Three distinct patterns of functional connectivity were demonstrated within the precuneus of both species, with each subdivision suggesting a discrete functional role: (i) the anterior precuneus, functionally connected with the superior parietal cortex, paracentral lobule, and motor cortex, suggesting a sensorimotor region; (ii) the central precuneus, functionally connected to the dorsolateral prefrontal, dorsomedial prefrontal, and multimodal lateral inferior parietal cortex, suggesting a cognitive/associative region; and (iii) the posterior precuneus, displaying functional connectivity with adjacent visual cortical regions. These functional connectivity patterns were differentiated from the more ventral networks associated with the posterior cingulate, which connected with limbic structures such as the medial temporal cortex, dorsal and ventromedial prefrontal regions, posterior lateral inferior parietal regions, and the lateral temporal cortex. Our findings are consistent with predictions from anatomical tracer studies in the monkey, and provide support that resting-state functional connectivity (RSFC) may in part reflect underlying anatomy. These subdivisions within the precuneus suggest that neuroimaging studies will benefit from treating this region as anatomically (and thus functionally) heterogeneous. Furthermore, the consistency between functional connectivity networks in monkeys and humans provides support for RSFC as a viable tool for addressing cross-species comparisons of functional neuroanatomy.

875 citations


Journal ArticleDOI
TL;DR: A model is proposed that extends the original idea of the MNS to include forward and inverse internal models and motor and sensory simulation, distinguishing the M NS from a more general concept of sVx.
Abstract: Many neuroimaging studies of the mirror neuron system (MNS) examine if certain voxels in the brain are shared between action observation and execution (shared voxels, sVx). Unfortunately, finding sVx in standard group analyses is not a guarantee that sVx exist in individual subjects. Using unsmoothed, single-subject analyses we show sVx can be reliably found in all 16 investigated participants. Beside the ventral premotor (BA6/44) and inferior parietal cortex (area PF) where mirror neurons (MNs) have been found in monkeys, sVx were reliably observed in dorsal premotor, supplementary motor, middle cingulate, somatosensory (BA3, BA2, and OP1), superior parietal, middle temporal cortex and cerebellum. For the premotor, somatosensory and parietal areas, sVx were more numerous in the left hemisphere. The hand representation of the primary motor cortex showed a reduced BOLD during hand action observation, possibly preventing undesired overt imitation. This study provides a more detailed description of the location and reliability of sVx and proposes a model that extends the original idea of the MNS to include forward and inverse internal models and motor and sensory simulation, distinguishing the MNS from a more general concept of sVx.

647 citations


Journal ArticleDOI
TL;DR: The temporal evolution of the default network in a critical, previously unstudied, period of early human brain development is described and new insights into the emergence of brain default network are offered.
Abstract: Several lines of evidence have implicated the existence of the brain's default network during passive or undirected mental states. Nevertheless, results on the emergence of the default network in very young pediatric subjects are lacking. Using resting functional magnetic resonance imaging in healthy pediatric subjects between 2 weeks and 2 years of age, we describe the temporal evolution of the default network in a critical, previously unstudied, period of early human brain development. Our results demonstrate that a primitive and incomplete default network is present in 2-week-olds, followed by a marked increase in the number of brain regions exhibiting connectivity, and the percent of connection at 1 year of age. By 2 years of age, the default network becomes similar to that observed in adults, including medial prefrontal cortex (MPFC), posterior cingulate cortex/retrosplenial (PCC/Rsp), inferior parietal lobule, lateral temporal cortex, and hippocampus regions. While the anatomical representations of the default network highly depend on age, the PCC/Rsp is consistently observed at in both age groups and is central to the most and strongest connections of the default network, suggesting that PCC/Rsp may serve as the main “hub” of the default network as this region does in adults. In addition, although not as remarkable as the PCC/Rsp, the MPFC also emerges as a potential secondary hub starting from 1 year of age. These findings reveal the temporal development of the default network in the critical period of early brain development and offer new insights into the emergence of brain default network.

503 citations


Journal ArticleDOI
17 Jul 2009-Science
TL;DR: A combination of evidence-based teaching practices and cognitive neuroscience measures could prevent dyslexia from occurring in the majority of children who would otherwise develop Dyslexia.
Abstract: Reading is essential in modern societies, but many children have dyslexia, a difficulty in learning to read. Dyslexia often arises from impaired phonological awareness, the auditory analysis of spoken language that relates the sounds of language to print. Behavioral remediation, especially at a young age, is effective for many, but not all, children. Neuroimaging in children with dyslexia has revealed reduced engagement of the left temporo-parietal cortex for phonological processing of print, altered white-matter connectivity, and functional plasticity associated with effective intervention. Behavioral and brain measures identify infants and young children at risk for dyslexia, and preventive intervention is often effective. A combination of evidence-based teaching practices and cognitive neuroscience measures could prevent dyslexia from occurring in the majority of children who would otherwise develop dyslexia.

477 citations


Journal ArticleDOI
TL;DR: The human language function is based on the grey matter of circumscribed brain regions in the frontal and the temporal cortex but moreover on the white matter fiber tracts connecting these regions, which are considered to be crucial for the evolution of human language, which is characterized by the ability to process syntactically complex sentences.

464 citations


Journal ArticleDOI
TL;DR: The results help to clarify how age-related white matter decline impairs cognitive performance and lend support to a "last-in-first-out" theory of the white matter health across the lifespan.

446 citations


Journal ArticleDOI
TL;DR: Functional magnetic resonance imaging activation to idioms and literal sentences including arm- and leg-related action words indicates that semantic representations grounded in the sensory–motor system play a role in the composition of sentence-level meaning, even in the case of idioms.
Abstract: Single words and sentences referring to bodily actions activate the motor cortex. However, this semantic grounding of concrete language does not address the critical question whether the sensory--motor system contributes to the processing of abstract meaning and thought. We examined functional magnetic resonance imaging activation to idioms and literal sentences including armand leg-related action words. A common left fronto-temporal network was engaged in sentence reading, with idioms yielding relatively stronger activity in (pre)frontal and middle temporal cortex. Crucially, somatotopic activation along the motor strip, in central and precentral cortex, was elicited by idiomatic and literal sentences, reflecting the body part reference of the words embedded in the sentences. Semantic somatotopy was most pronounced after sentence ending, thus reflecting sentence-level processing rather than that of single words. These results indicate that semantic representations grounded in the sensory--motor system play a role in the composition of sentence-level meaning, even in the case of idioms.

399 citations


Journal ArticleDOI
TL;DR: Among musicians, contrasts of AP possessors and nonpossessors showed significantly thinner cortex among possessors in a number of areas, including the posterior dorsal frontal cortices that have been previously implicated in the performance of AP tasks.
Abstract: We used a multimethod approach to investigate the neuroanatomical correlates of musicianship and absolute pitch (AP). Cortical thickness measures, interregional correlations applied to these thicknesses, and voxel-based morphometry (VBM) were applied to the same magnetic resonance imaging data set of 71 musicians (27 with AP) and 64 nonmusicians. Cortical thickness was greater in musicians with peaks in superior temporal and dorsolateral frontal regions. Correlations between 2 seed points, centered on peaks of thickness difference within the right frontal cortex, and all other points across the cortex showed greater specificity of significant correlations among musicians, with fewer and more discrete areas correlating with the frontal seeds, including the superior temporal cortex. VBM of gray matter (GM)-classified voxels yielded a strongly right-lateralized focus of greater GM concentration in musicians centered on the posterolateral aspect of Heschl's gyrus. Together, these results are consistent with functional evidence emphasizing the importance of a frontotemporal network of areas heavily relied upon in the performance of musical tasks. Among musicians, contrasts of AP possessors and nonpossessors showed significantly thinner cortex among possessors in a number of areas, including the posterior dorsal frontal cortices that have been previously implicated in the performance of AP tasks.

336 citations


Journal ArticleDOI
TL;DR: Commonalities and differences in the wide-scale brain organization between the two species are demonstrated and potential correspondences across species are proposed, providing an initial step toward establishing functionally homologous category-selective areas.
Abstract: Single-cell studies in the macaque have reported selective neural responses evoked by visual presentations of faces and bodies. Consistent with these findings, functional magnetic resonance imaging studies in humans and monkeys indicate that regions in temporal cortex respond preferentially to faces and bodies. However, it is not clear how these areas correspond across the two species. Here, we directly compared category-selective areas in macaques and humans using virtually identical techniques. In the macaque, several face- and body part-selective areas were found located along the superior temporal sulcus (STS) and middle temporal gyrus (MTG). In the human, similar to previous studies, face-selective areas were found in ventral occipital and temporal cortex and an additional face-selective area was found in the anterior temporal cortex. Face-selective areas were also found in lateral temporal cortex, including the previously reported posterior STS area. Body part-selective areas were identified in the human fusiform gyrus and lateral occipitotemporal cortex. In a first experiment, both monkey and human subjects were presented with pictures of faces, body parts, foods, scenes, and man-made objects, to examine the response profiles of each category-selective area to the five stimulus types. In a second experiment, face processing was examined by presenting upright and inverted faces. By comparing the responses and spatial relationships of the areas, we propose potential correspondences across species. Adjacent and overlapping areas in the macaque anterior STS/MTG responded strongly to both faces and body parts, similar to areas in the human fusiform gyrus and posterior STS. Furthermore, face-selective areas on the ventral bank of the STS/MTG discriminated both upright and inverted faces from objects, similar to areas in the human ventral temporal cortex. Overall, our findings demonstrate commonalities and differences in the wide-scale brain organization between the two species and provide an initial step toward establishing functionally homologous category-selective areas.

300 citations


Journal ArticleDOI
TL;DR: Compared to women, men showed an increased recruitment of regulatory cortical areas during cognitively increasing initial emotional reactions, which was associated with an increase in amygdala activity, and women showed enhanced amygdala responding to aversive stimuli in the initial viewing phase.
Abstract: Sex differences in emotional responding have been repeatedly postulated but less consistently shown in empirical studies. Because emotional reactions are modulated by cognitive appraisal, sex differences in emotional responding might depend on differences in emotion regulation. In this study, we investigated sex differences in emotional reactivity and emotion regulation using a delayed cognitive reappraisal paradigm and measured whole-brain BOLD signal in 17 men and 16 women. During fMRI, participants were instructed to increase, decrease, or maintain their emotional reactions evoked by negative pictures in terms of cognitive reappraisal. We analyzed BOLD responses to aversive compared to neutral pictures in the initial viewing phase and the effect of cognitive reappraisal in the subsequent regulation phase. Women showed enhanced amygdala responding to aversive stimuli in the initial viewing phase, together with increased activity in small clusters within the prefrontal cortex and the temporal cortex. During cognitively decreasing emotional reactions, women recruited parts of the orbitofrontal cortex, the anterior cingulate, and the dorsolateral prefrontal cortex to a lesser extent than men, while there was no sex effect on amygdala activity. In contrast, compared to women, men showed an increased recruitment of regulatory cortical areas during cognitively increasing initial emotional reactions, which was associated with an increase in amygdala activity. Clinical implications of these findings are discussed.

Journal ArticleDOI
TL;DR: This work explored the precision of top-down activation of perceptual representations using neural pattern classification to identify activation patterns associated with imagery of distinct letter stimuli, and concluded that visual imagery is mediated via top- down activation of functionally distinct, yet spatially overlapping population codes for high-level visual representations.
Abstract: Visual imagery is mediated via top-down activation of visual cortex. Similar to stimulus-driven perception, the neural configurations associated with visual imagery are differentiated according to content. For example, imagining faces or places differentially activates visual areas associated with perception of actual face or place stimuli. However, while top-down activation of topographically specific visual areas during visual imagery is well established, the extent to which internally generated visual activity resembles the fine-scale population coding responsible for stimulus-driven perception remains unknown. Here, we sought to determine whether top-down mechanisms can selectively activate perceptual representations coded across spatially overlapping neural populations. We explored the precision of top-down activation of perceptual representations using neural pattern classification to identify activation patterns associated with imagery of distinct letter stimuli. Pattern analysis of the neural population observed within high-level visual cortex, including lateral occipital complex, revealed that imagery activates the same neural representations that are activated by corresponding visual stimulation. We conclude that visual imagery is mediated via top-down activation of functionally distinct, yet spatially overlapping population codes for high-level visual representations.

Journal ArticleDOI
TL;DR: Atrophy is not uniform across regions, nor does it follow a linear trajectory, so knowledge of the spatial pattern and rate of decline across the spectrum from normal aging to Alzheimer disease can provide valuable information for detecting early disease and monitoring treatment effects at different stages of disease progression.
Abstract: Objective: To evaluate the spatial pattern and regional rates of neocortical atrophy from normal aging to early Alzheimer disease (AD). Methods: Longitudinal MRI data were analyzed using high-throughput image analysis procedures for 472 individuals diagnosed as normal, mild cognitive impairment (MCI), or AD. Participants were divided into 4 groups based on Clinical Dementia Rating Sum of Boxes score (CDR-SB). Annual atrophy rates were derived by calculating percent cortical volume loss between baseline and 12-month scans. Repeated-measures analyses of covariance were used to evaluate group differences in atrophy rates across regions as a function of impairment. Planned comparisons were used to evaluate the change in atrophy rates across levels of disease severity. Results: In patients with MCI–CDR-SB 0.5–1, annual atrophy rates were greatest in medial temporal, middle and inferior lateral temporal, inferior parietal, and posterior cingulate. With increased impairment (MCI–CDR-SB 1.5–2.5), atrophy spread to parietal, frontal, and lateral occipital cortex, followed by anterior cingulate cortex. Analysis of regional trajectories revealed increasing rates of atrophy across all neocortical regions with clinical impairment. However, increases in atrophy rates were greater in early disease within medial temporal cortex, whereas increases in atrophy rates were greater at later stages in prefrontal, parietal, posterior temporal, parietal, and cingulate cortex. Conclusions: Atrophy is not uniform across regions, nor does it follow a linear trajectory. Knowledge of the spatial pattern and rate of decline across the spectrum from normal aging to Alzheimer disease can provide valuable information for detecting early disease and monitoring treatment effects at different stages of disease progression.

Journal ArticleDOI
TL;DR: It is argued that motor cortex activation is essential in joint speech, particularly for the timing of turn taking, and a specific role in sensorimotor processing in conversation is suggested.
Abstract: The motor theory of speech perception assumes that activation of the motor system is essential in the perception of speech. However, deficits in speech perception and comprehension do not arise from damage that is restricted to the motor cortex, few functional imaging studies reveal activity in the motor cortex during speech perception, and the motor cortex is strongly activated by many different sound categories. Here, we evaluate alternative roles for the motor cortex in spoken communication and suggest a specific role in sensorimotor processing in conversation. We argue that motor cortex activation is essential in joint speech, particularly for the timing of turn taking.

Journal ArticleDOI
TL;DR: The data provide a neurofunctional account of developmental dyslexia, in which phonological processing deficits are linked to reading failure through a deficit in neural integration of letters and speech sounds.

Journal ArticleDOI
TL;DR: The present study provides the first evidence of broadly distributed and heritable reductions of cortical thickness alterations in schizophrenia, since only trend-level reductions of thickness were observed in siblings, and cortical thickness per se is not a strong intermediate phenotype for schizophrenia.
Abstract: Context Schizophrenia is a brain disorder with predominantly genetic risk factors, and previous research has identified heritable cortical and subcortical reductions in local brain volume. To our knowledge, cortical thickness, a measure of particular interest in schizophrenia, has not previously been evaluated in terms of its heritability in relationship to risk for schizophrenia. Objective To quantify the distribution and heritability of cortical thickness changes in schizophrenia. Design We analyzed a large sample of normal controls, affected patients, and unaffected siblings using a surface-based approach. Cortical thickness was compared between diagnosis groups on a surfacewide node-by-node basis. Heritability related to disease risk was assessed in regions derived from an automated cortical parcellation algorithm by calculating the Risch λ. Setting Research hospital. Participants One hundred ninety-six normal controls, 115 affected patients with schizophrenia, and 192 unaffected siblings. Main Outcome Measure Regional cortical thickness. Results Node-by-node mapping statistics revealed widespread thickness reductions in the patient group, most pronouncedly in the frontal lobe and temporal cortex. Unaffected siblings did not significantly differ from normal controls at the chosen conservative threshold. Risch λ analysis revealed widespread evidence for heritability for cortical thickness reductions throughout the brain. Conclusions To our knowledge, the present study provides the first evidence of broadly distributed and heritable reductions of cortical thickness alterations in schizophrenia. However, since only trend-level reductions of thickness were observed in siblings, cortical thickness per se (at least as measured by this approach) is not a strong intermediate phenotype for schizophrenia.

Journal ArticleDOI
TL;DR: Anomalous white‐matter development in ADHD is demonstrated in distinct cortical regions that have been shown to be dysfunctional or hypoactive in fMRI studies of ADHD, adding to an emerging picture of abnormal development within fronto‐parietal cortical networks that may underpin the cognitive and attentional disturbances associated with ADHD.
Abstract: Current evidence suggests that attention deficit hyperactivity disorder (ADHD) involves dysfunction in wide functional networks of brain areas associated with attention and cognition. This study examines the structural integrity of white-matter neural pathways, which underpin these functional networks, connecting fronto-striatal and fronto-parietal circuits, in children with ADHD. Fifteen right-handed 8 to 18-year-old males with ADHD-combined type and 15 right-handed, age, verbal, and performance IQ-matched, healthy males underwent diffusion tensor imaging. A recent method of tract-based spatial statistics was used to examine fractional anisotropy (FA) and mean diffusivity within major white-matter pathways throughout the whole-brain. White-matter abnormalities were found in several distinct clusters within left fronto-temporal regions and right parietal-occipital regions. Specifically, participants with ADHD showed greater FA in white-matter regions underlying inferior parietal, occipito-parietal, inferior frontal, and inferior temporal cortex. Secondly, eigenvalue analysis suggests that the difference in FA in ADHD may relate to a lesser degree of neural branching within key white-matter pathways. Tractography methods showed these regions to generally form part of white-matter pathways connecting prefrontal and parieto-occipital areas with the striatum and the cerebellum. Our findings demonstrate anomalous white-matter development in ADHD in distinct cortical regions that have previously been shown to be dysfunctional or hypoactive in fMRI studies of ADHD. These data add to an emerging picture of abnormal development within fronto-parietal cortical networks that may underpin the cognitive and attentional disturbances associated with ADHD.

Journal ArticleDOI
TL;DR: It is suggested that the cerebellum might promote neural changes in superior temporal cortex, which was selectively activated during the later phase of prism exposure and could mediate the effects of prism adaptation on cognitive spatial representations.
Abstract: Prism adaptation does not only induce short-term sensorimotor plasticity, but also longer-term reorganization in the neural representation of space We used event-related fMRI to study dynamic changes in brain activity during both early and prolonged exposure to visual prisms Participants performed a pointing task before, during, and after prism exposure Measures of trial-by-trial pointing errors and corrections allowed parametric analyses of brain activity as a function of performance We show that during the earliest phase of prism exposure, anterior intraparietal sulcus was primarily implicated in error detection, whereas parieto-occipital sulcus was implicated in error correction Cerebellum activity showed progressive increases during prism exposure, in accordance with a key role for spatial realignment This time course further suggests that the cerebellum might promote neural changes in superior temporal cortex, which was selectively activated during the later phase of prism exposure and could mediate the effects of prism adaptation on cognitive spatial representations

Journal ArticleDOI
TL;DR: Strong support is found for an alteration of long-range coupling in tinnitus, which was decreased in the alpha frequency band and increased in the gamma frequency band, and these changes discriminate well between tinn Titus patients and control participants.
Abstract: Subjective tinnitus is characterized by an auditory phantom perception in the absence of any physical sound source. Consequently, in a quiet environment, tinnitus patients differ from control participants because they constantly perceive a sound whereas controls do not. We hypothesized that this difference is expressed by differential activation of distributed cortical networks. The analysis was based on a sample of 41 participants: 21 patients with chronic tinnitus and 20 healthy control participants. To investigate the architecture of these networks, we used phase locking analysis in the 1–90 Hz frequency range of a minute of resting-state MEG recording. We found: 1) For tinnitus patients: A significant decrease of inter-areal coupling in the alpha (9–12 Hz) band and an increase of inter-areal coupling in the 48–54 Hz gamma frequency range relative to the control group. 2) For both groups: an inverse relationship (r = -.71) of the alpha and gamma network coupling. 3) A discrimination of 83% between the patient and the control group based on the alpha and gamma networks. 4) An effect of manifestation on the distribution of the gamma network: In patients with a tinnitus history of less than 4 years, the left temporal cortex was predominant in the gamma network whereas in patients with tinnitus duration of more than 4 years, the gamma network was more widely distributed including more frontal and parietal regions. In the here presented data set we found strong support for an alteration of long-range coupling in tinnitus. Long-range coupling in the alpha frequency band was decreased for tinnitus patients while long-range gamma coupling was increased. These changes discriminate well between tinnitus and control participants. We propose a tinnitus model that integrates this finding in the current knowledge about tinnitus. Furthermore we discuss the impact of this finding to tinnitus therapies using Transcranial Magnetic Stimulation (TMS).

Journal ArticleDOI
TL;DR: The authors examined a case-series of 11 SD patients on a synonym judgment test that orthogonally varied the frequency and imageability of the items, suggesting that the anterior temporal lobes underpin semantic knowledge for both concrete and abstract concepts and reverse imageability effects are not a characteristic feature of SD.
Abstract: The vast majority of brain-injured patients with semantic impairment have better comprehension of concrete than abstract words. In contrast, several patients with semantic dementia (SD), who show circumscribed atrophy of the anterior temporal lobes bilaterally, have been reported to show reverse imageability effects, that is, relative preservation of abstract knowledge. Although these reports largely concern individual patients, some researchers have recently proposed that superior comprehension of abstract concepts is a characteristic feature of SD. This would imply that the anterior temporal lobes are particularly crucial for processing sensory aspects of semantic knowledge, which are associated with concrete not abstract concepts. However, functional neuroimaging studies of healthy participants do not unequivocally predict reverse imageability effects in SD because the temporal poles sometimes show greater activation for more abstract concepts. The authors examined a case-series of 11 SD patients on a synonym judgment test that orthogonally varied the frequency and imageability of the items. All patients had higher success rates for more imageable as well as more frequent words, suggesting that (1) the anterior temporal lobes underpin semantic knowledge for both concrete and abstract concepts, (2) more imageable items--perhaps because of their richer multimodal representations--are typically more robust in the face of global semantic degradation and (3) reverse imageability effects are not a characteristic feature of SD.

Journal ArticleDOI
TL;DR: The presence of an ApoE4 allele in nondemented older adults is associated with decreases in cognition and gray and white matter changes in the medial temporal cortex, providing further evidence of the effects of genetic variance related to imaging and cognitive measures of risk for Alzheimer's disease.
Abstract: Neuroimaging studies of apolipoprotein E (ApoE4) have implicated its association with brain atrophy in Alzheimer's disease To date, few studies have used automated morphological analysis techniques to assess ApoE4-related brain structure change in both gray and white matter in nondemented older adults Nondemented (CDR = 0, n = 53) subjects over 60 had MRI, diffusion tensor imaging, and neurocognitive assessments We assessed differences in cognition and brain structure associated with ApoE4 genetic variation using voxel-based morphometry techniques, and tract-based spatial statistics of fractional anisotropy change In nondemented older adults with the E4 allele, cognitive performance was reduced, and atrophy was present in the hippocampus and amygdala compared to ApoE4 negative participants We also report that E4 carriers have decreased fractional anisotropy in the left parahippocampal gyrus white matter In conclusion, the presence of an ApoE4 allele in nondemented older adults is associated with decreases in cognition and gray and white matter changes in the medial temporal cortex Overall we provide further evidence of the effects of genetic variance related to imaging and cognitive measures of risk for Alzheimer's disease

Journal ArticleDOI
TL;DR: It is suggested that the hyperactivity of the temporal cortices in tinnitus is integrated in a global network of long-range cortical connectivity and top-down influence from the global network on the temporal areas relates to the subjective strength of the tinnitis distress.
Abstract: Subjective tinnitus is the perception of a sound in the absence of any physical source. It has been shown that tinnitus is associated with hyperactivity of the auditory cortices. Accompanying this hyperactivity, changes in non-auditory brain structures have also been reported. However, there have been no studies on the long-range information flow between these regions. Using Magnetoencephalography, we investigated the long-range cortical networks of chronic tinnitus sufferers (n = 23) and healthy controls (n = 24) in the resting state. A beamforming technique was applied to reconstruct the brain activity at source level and the directed functional coupling between all voxels was analyzed by means of Partial Directed Coherence. Within a cortical network, hubs are brain structures that either influence a great number of other brain regions or that are influenced by a great number of other brain regions. By mapping the cortical hubs in tinnitus and controls we report fundamental group differences in the global networks, mainly in the gamma frequency range. The prefrontal cortex, the orbitofrontal cortex and the parieto-occipital region were core structures in this network. The information flow from the global network to the temporal cortex correlated positively with the strength of tinnitus distress. With the present study we suggest that the hyperactivity of the temporal cortices in tinnitus is integrated in a global network of long-range cortical connectivity. Top-down influence from the global network on the temporal areas relates to the subjective strength of the tinnitus distress.

Journal ArticleDOI
TL;DR: Findings clarify inconsistencies from prior imaging studies of affect by suggesting that two underlying neurophysiological systems, valence and arousal, may subserve the processing of affective stimuli, consistent with the circumplex model of affect.
Abstract: Objective: We aimed to study the neural processing of emotion-denoting words based on a circumplex model of affect, which posits that all emotions can be described as a linear combination of two neurophysiological dimensions, valence and arousal. Based on the circumplex model, we predicted a linear relationship between neural activity and incremental changes in these two affective dimen- sions. Methods: Using functional magnetic resonance imaging, we assessed in 10 subjects the correla- tions of BOLD (blood oxygen level dependent) signal with ratings of valence and arousal during the presentation of emotion-denoting words. Results: Valence ratings correlated positively with neural ac- tivity in the left insular cortex and inversely with neural activity in the right dorsolateral prefrontal and precuneus cortices. The absolute value of valence ratings (reflecting the positive and negative extremes of valence) correlated positively with neural activity in the left dorsolateral and medial pre- frontal cortex (PFC), dorsal anterior cingulate cortex, posterior cingulate cortex, and right dorsal PFC, and inversely with neural activity in the left medial temporal cortex and right amygdala. Arousal rat- ings and neural activity correlated positively in the left parahippocampus and dorsal anterior cingulate cortex, and inversely in the left dorsolateral PFC and dorsal cerebellum. Conclusion: We found evidence for two neural networks subserving the affective dimensions of valence and arousal. These findings clarify inconsistencies from prior imaging studies of affect by suggesting that two underlying neuro- physiological systems, valence and arousal, may subserve the processing of affective stimuli, consistent with the circumplex model of affect. Hum Brain Mapp 30:883-895, 2009. V C 2008 Wiley-Liss, Inc.

Journal ArticleDOI
TL;DR: It is suggested that the sentence-specific ATL region is sensitive to both syntactic and integrative semantic functions during sentence processing, with a smaller portion of this area preferentially involved in the later.
Abstract: Numerous studies have identified an anterior temporal lobe (ATL) region that responds preferentially to sentence-level stimuli. It is unclear, however, whether this activity reflects a response to syntactic computations or some form of semantic integration. This distinction is difficult to investigate with the stimulus manipulations and anomaly detection paradigms traditionally implemented. The present functional magnetic resonance imaging study addresses this question via a selective attention paradigm. Subjects monitored for occasional semantic anomalies or occasional syntactic errors, thus directing their attention to semantic integration, or syntactic properties of the sentences. The hemodynamic response in the sentence-selective ATL region (defined with a localizer scan) was examined during anomaly/error-free sentences only, to avoid confounds due to error detection. The majority of the sentence-specific region of interest was equally modulated by attention to syntactic or compositional semantic features, whereas a smaller subregion was only modulated by the semantic task. We suggest that the sentence-specific ATL region is sensitive to both syntactic and integrative semantic functions during sentence processing, with a smaller portion of this area preferentially involved in the later. This study also suggests that selective attention paradigms may be effective tools to investigate the functional diversity of networks involved in sentence processing.

Journal ArticleDOI
TL;DR: Results suggest that abnormal functional relationships between the putamen and the cortical-striatal-thalamic circuits as well as the default mode network may underlie the pathological basis of ADHD.

Journal ArticleDOI
TL;DR: Resting-state connectivity disturbance of PCC-temporal cortex may be a central role in cognitive deficit in aMCI patients and this would be consonant with the recruitment of compensatory mechanisms and the process of offset functional impairments appearing as neuropathologic develops.

Journal ArticleDOI
TL;DR: The right temporo-parietal junction was recruited equally for mental and physical facts about people in younger children, but only for mental facts in older children.
Abstract: Neuroimaging studies with adults have identified cortical regions recruited when people think about other people's thoughts (theory of mind): temporo-parietal junction, posterior cingulate, and medial prefrontal cortex. These same regions were recruited in 13 children aged 6-11 years when they listened to sections of a story describing a character's thoughts compared to sections of the same story that described the physical context. A distinct region in the posterior superior temporal sulcus was implicated in the perception of biological motion. Change in response selectivity with age was observed in just one region. The right temporo-parietal junction was recruited equally for mental and physical facts about people in younger children, but only for mental facts in older children.

Journal ArticleDOI
TL;DR: It is demonstrated that task‐induced deactivations within parts of the DMN depend on the specific characteristics of the attention and WM components of the task, which can be subdivided into a set of brain regions that deactivate indiscriminately in response to cognitive demand and a part whose deactivation depends on thespecific task.
Abstract: The idea of an organized mode of brain function that is present as default state and suspended during goal-directed behaviors has recently gained much interest in the study of human brain function. The default mode hypothesis is based on the repeated observation that certain brain areas show task-induced deactivations across a wide range of cognitive tasks. In this event-related functional resonance imaging study we tested the default mode hypothesis by comparing common and selective patterns of BOLD deactivation in response to the demands on visual attention and working memory (WM) that were independently modulated within one task. The results revealed task-induced deactivations within regions of the default mode network (DMN) with a segregation of areas that were additively deactivated by an increase in the demands on both attention and WM, and areas that were selectively deactivated by either high attentional demand or WM load. Attention-selective deactivations appeared in the left ventrolateral and medial prefrontal cortex and the left lateral temporal cortex. Conversely, WM-selective deactivations were found predominantly in the right hemisphere including the medial-parietal, the lateral temporo-parietal, and the medial prefrontal cortex. Moreover, during WM encoding deactivated regions showed task-specific functional connectivity. These findings demonstrate that task-induced deactivations within parts of the DMN depend on the specific characteristics of the attention and WM components of the task. The DMN can thus be subdivided into a set of brain regions that deactivate indiscriminately in response to cognitive demand ("the core DMN") and a part whose deactivation depends on the specific task.

Journal ArticleDOI
TL;DR: Network and classification analysis suggest that DD in children may be characterized by multiple dysfunctional circuits arising from a core WM deficit, and DTI tractography suggests that long-range WM projection fibers linking the right fusiform gyrus with temporal-parietal WM are a specific source of vulnerability in DD.
Abstract: Poor mathematical abilities adversely affect academic and career opportunities. The neuroanatomical basis of developmental dyscalculia (DD), a specific learning deficit with prevalence rates exceeding 5%, is poorly understood. We used structural MRI and diffusion tensor imaging (DTI) to examine macro- and micro-structural impairments in 7-9 year old children with DD, compared to a group of typically developing (TD) children matched on age, gender, intelligence, reading abilities and working memory capacity. Voxel-based morphometry (VBM) revealed reduced grey matter (GM) bilaterally in superior parietal lobule, intra-parietal sulcus, fusiform gyrus, parahippocampal gyrus and right anterior temporal cortex in children with DD. VBM analysis also showed reduced white matter (WM) volume in right temporal-parietal cortex. DTI revealed reduced fractional anisotropy (FA) in this WM region, pointing to significant right hemisphere micro-structural impairments. Furthermore, FA in this region was correlated with numerical operations but not verbal mathematical reasoning or word reading. Atlas-based tract mapping identified the inferior longitudinal fasciculus, inferior fronto-occipital fasciculus and caudal forceps major as key pathways impaired in DD. DTI tractography suggests that long-range WM projection fibers linking the right fusiform gyrus with temporal-parietal WM are a specific source of vulnerability in DD. Network and classification analysis suggest that DD in children may be characterized by multiple dysfunctional circuits arising from a core WM deficit. Our findings link GM and WM abnormalities in children with DD and they point to macro- and micro-structural abnormalities in right hemisphere temporal-parietal WM, and pathways associated with it, as key neuroanatomical correlates of DD.

Journal ArticleDOI
01 Dec 2009-Brain
TL;DR: Results demonstrate that functional connectivity between anterolateral superior temporal cortex and right anterior superior temporal cortices is a marker of receptive language outcome after aphasic stroke, and illustrate that language system organization after focal brain lesions may be marked by complex signatures of altered local and pathway-level function.
Abstract: Focal brain lesions are assumed to produce language deficits by two basic mechanisms: local cortical dysfunction at the lesion site, and remote cortical dysfunction due to disruption of the transfer and integration of information between connected brain regions. However, functional imaging studies investigating language outcome after aphasic stroke have tended to focus only on the role of local cortical function. In this positron emission tomography functional imaging study, we explored relationships between language comprehension performance after aphasic stroke and the functional connectivity of a key speech-processing region in left anterolateral superior temporal cortex. We compared the organization of left anterolateral superior temporal cortex functional connections during narrative speech comprehension in normal subjects with left anterolateral superior temporal cortex connectivity in a group of chronic aphasic stroke patients. We then evaluated the language deficits associated with altered left anterolateral superior temporal cortex connectivity in aphasic stroke. During normal narrative speech comprehension, left anterolateral superior temporal cortex displayed positive functional connections with left anterior basal temporal cortex, left inferior frontal gyrus and homotopic cortex in right anterolateral superior temporal cortex. As a group, aphasic patients demonstrated a selective disruption of the normal functional connection between left and right anterolateral superior temporal cortices. We observed that deficits in auditory single word and sentence comprehension correlated both with the degree of disruption of left-right anterolateral superior temporal cortical connectivity and with local activation in the anterolateral superior temporal cortex. Subgroup analysis revealed that aphasic patients with preserved positive intertemporal connectivity displayed better receptive language function; these patients also showed greater than normal left inferior frontal gyrus activity, suggesting a possible 'top-down' compensatory mechanism. These results demonstrate that functional connectivity between anterolateral superior temporal cortex and right anterior superior temporal cortex is a marker of receptive language outcome after aphasic stroke, and illustrate that language system organization after focal brain lesions may be marked by complex signatures of altered local and pathway-level function.