scispace - formally typeset
Search or ask a question

Showing papers on "Ultimate tensile strength published in 2018"


Journal ArticleDOI
01 Nov 2018-Nature
TL;DR: It is shown that oxygen can take the form of ordered oxygen complexes, a state in between oxide particles and frequently occurring random interstitials, which lead to unprecedented enhancement in both strength and ductility in compositionally complex solid solutions, the so-called high-entropy alloys (HEAs).
Abstract: Oxygen, one of the most abundant elements on Earth, often forms an undesired interstitial impurity or ceramic phase (such as an oxide particle) in metallic materials. Even when it adds strength, oxygen doping renders metals brittle1–3. Here we show that oxygen can take the form of ordered oxygen complexes, a state in between oxide particles and frequently occurring random interstitials. Unlike traditional interstitial strengthening4,5, such ordered interstitial complexes lead to unprecedented enhancement in both strength and ductility in compositionally complex solid solutions, the so-called high-entropy alloys (HEAs)6–10. The tensile strength is enhanced (by 48.5 ± 1.8 per cent) and ductility is substantially improved (by 95.2 ± 8.1 per cent) when doping a model TiZrHfNb HEA with 2.0 atomic per cent oxygen, thus breaking the long-standing strength–ductility trade-off11. The oxygen complexes are ordered nanoscale regions within the HEA characterized by (O, Zr, Ti)-rich atomic complexes whose formation is promoted by the existence of chemical short-range ordering among some of the substitutional matrix elements in the HEAs. Carbon has been reported to improve strength and ductility simultaneously in face-centred cubic HEAs12, by lowering the stacking fault energy and increasing the lattice friction stress. By contrast, the ordered interstitial complexes described here change the dislocation shear mode from planar slip to wavy slip, and promote double cross-slip and thus dislocation multiplication through the formation of Frank–Read sources (a mechanism explaining the generation of multiple dislocations) during deformation. This ordered interstitial complex-mediated strain-hardening mechanism should be particularly useful in Ti-, Zr- and Hf-containing alloys, in which interstitial elements are highly undesirable owing to their embrittlement effects, and in alloys where tuning the stacking fault energy and exploiting athermal transformations13 do not lead to property enhancement. These results provide insight into the role of interstitial solid solutions and associated ordering strengthening mechanisms in metallic materials. Ordered oxygen complexes in high-entropy alloys enhance both strength and ductility in these compositionally complex solid solutions.

874 citations


Journal ArticleDOI
TL;DR: In this article, the authors provide a brief discussion about additive manufacturing and also the most employed additive manufacturing technologies for polymers, specifically, properties under different loading types such as tensile, bending, compressive, fatigue, impact and others.
Abstract: 3D printing, more formally known as Additive Manufacturing (AM), is already being adopted for rapid prototyping and soon rapid manufacturing. This review provides a brief discussion about AM and also the most employed AM technologies for polymers. The commonly-used ASTM and ISO mechanical test standards which have been used by various research groups to test the strength of the 3D-printed parts have been reported. Also, a summary of an exhaustive amount of literature regarding the mechanical properties of 3D-printed parts is included, specifically, properties under different loading types such as tensile, bending, compressive, fatigue, impact and others. Properties at low temperatures have also been discussed. Further, the effects of fillers as well as post-processing on the mechanical properties have also been discussed. Lastly, several important questions to consider in the standardization of mechanical test methods have been raised.

822 citations


Journal ArticleDOI
30 Apr 2018-ACS Nano
TL;DR: The nacre-inspired strategy in this study offers a promising approach for the design and preparation of the strong integrated and flexible MXene/CNF composite paper, which may be applied in various fields such as flexible wearable devices, weapon equipment, and robot joints.
Abstract: With the growing popularity of electrical communication equipment, high-performance electromagnetic interference (EMI) shielding materials are widely used to deal with radiation pollution. However, the large thickness and poor mechanical properties of many EMI shielding materials usually limit their applications. In this study, ultrathin and highly flexible Ti3C2Tx (d-Ti3C2Tx, MXene)/cellulose nanofiber (CNF) composite paper with a nacre-like lamellar structure is fabricated via a vacuum-filtration-induced self-assembly process. By the interaction between one-dimensional (1D) CNFs and two-dimensional (2D) d-Ti3C2Tx MXene, the binary strengthening and toughening of the nacre-like d-Ti3C2Tx/CNF composite paper has been successfully achieved, leading to high tensile strength (up to 135.4 MPa) and fracture strain (up to 16.7%), as well as excellent folding endurance (up to 14 260 times). Moreover, the d-Ti3C2Tx/CNF composite paper exhibits high electrical conductivity (up to 739.4 S m–1) and excellent specifi...

800 citations


Journal ArticleDOI
TL;DR: A review of recent research and developments in high-strength Mg-RE alloys is beneficial for the further design of Mg alloys with higher strength as well as excellent comprehensive performance as discussed by the authors.

484 citations


Journal ArticleDOI
TL;DR: The traditionally disadvantageous viscoelastic property of hydrogels can be transformed into an advantage for sensing, which reveals prospects for hydrogel sensors.
Abstract: The development of wearable electronics, point-of-care testing, and soft robotics requires strain sensors that are highly sensitive, stretchable, capable of adhering conformably to arbitrary and complex surfaces, and preferably self-healable. Conductive hydrogels hold great promise as sensing materials for these applications. However, their sensitivities are generally low, and they suffer from signal hysteresis and fluctuation due to their viscoelastic property, which can compromise their sensing performance. We demonstrate that hydrogel composites incorporating MXene (Ti3C2T x ) outperform all reported hydrogels for strain sensors. The obtained composite hydrogel [MXene-based hydrogel (M-hydrogel)] exhibits outstanding tensile strain sensitivity with a gauge factor (GF) of 25, which is 10 times higher than that of pristine hydrogel. Furthermore, the M-hydrogel exhibits remarkable stretchability of more than 3400%, an instantaneous self-healing ability, excellent conformability, and adhesiveness to various surfaces, including human skin. The M-hydrogel composite exhibits much higher sensitivity under compressive strains (GF of 80) than under tensile strains. We exploit this asymmetrical strain sensitivity coupled with viscous deformation (self-recoverable residual deformation) to add new dimensions to the sensing capability of hydrogels. Consequently, both the direction and speed of motions on the hydrogel surface can be detected conveniently. Based on this effect, M-hydrogel demonstrates superior sensing performance in advanced sensing applications. Thus, the traditionally disadvantageous viscoelastic property of hydrogels can be transformed into an advantage for sensing, which reveals prospects for hydrogel sensors.

478 citations


Journal ArticleDOI
TL;DR: The results showed that the interphase layer provided a smooth transition of elastic modulus from steel particles to the polymeric matrix, and a 10% volume fraction of steel particles could enhance the elasticModulus of PLLA polymer by 31%.
Abstract: The objective of this study is to characterize the micromechanical properties of poly-l-lactic acid (PLLA) composites reinforced by grade 420 stainless steel (SS) particles with a specific focus on the interphase properties. The specimens were manufactured using 3D printing techniques due to its many benefits, including high accuracy, cost effectiveness and customized geometry. The adopted fused filament fabrication resulted in a thin interphase layer with an average thickness of 3 µm. The mechanical properties of each phase, as well as the interphase, were characterized by nanoindentation tests. The effect of matrix degradation, i.e., imperfect bonding, on the elastic modulus of the composite was further examined by a representative volume element (RVE) model. The results showed that the interphase layer provided a smooth transition of elastic modulus from steel particles to the polymeric matrix. A 10% volume fraction of steel particles could enhance the elastic modulus of PLLA polymer by 31%. In addition, steel particles took 37% to 59% of the applied load with respect to the particle volume fraction. We found that degradation of the interphase reduced the elastic modulus of the composite by 70% and 7% under tensile and compressive loads, respectively. The shear modulus of the composite with 10% particles decreased by 36%, i.e., lower than pure PLLA, when debonding occurred.

454 citations


Journal ArticleDOI
TL;DR: In this work, instead of addressing the segregation problems, the segregation was utilized to develop a novel microstructure consisting of a nanometre-grained duplex (α+β) structure and micrometre scale β phase with superior mechanical properties.
Abstract: In β titanium alloys, the β stabilizers segregate easily and considerable effort has been devoted to alleviate/eliminate the segregation. In this work, instead of addressing the segregation problems, the segregation was utilized to develop a novel microstructure consisting of a nanometre-grained duplex (α+β) structure and micrometre scale β phase with superior mechanical properties. An as-cast Ti-9Mo-6W alloy exhibited segregation of Mo and W at the tens of micrometre scale. This was subjected to cold rolling and flash annealing at 820 oC for 2 and 5 mins. The solidification segregation of Mo and W leads to a locally different microstructure after cold rolling (i.e., nanostructured β phase in the regions rich in Mo and W and plate-like martensite and β phase in regions relatively poor in Mo and W), which play a decisive role in the formation of the heterogeneous microstructure. Tensile tests showed that this alloy exhibited a superior combination of high yield strength (692 MPa), high tensile strength (1115 MPa), high work hardening rate and large uniform elongation (33.5%). More importantly, the new technique proposed in this work could be potentially applicable to other alloy systems with segregation problems.

431 citations


Journal ArticleDOI
TL;DR: A non-equiatomic alloy is developed that utilizes spinodal decomposition in a five-element alloy to obtain high content nanophases and the highest tensile strength reported to date.
Abstract: Precipitation-hardening high-entropy alloys (PH-HEAs) with good strength−ductility balances are a promising candidate for advanced structural applications. However, current HEAs emphasize near-equiatomic initial compositions, which limit the increase of intermetallic precipitates that are closely related to the alloy strength. Here we present a strategy to design ultrastrong HEAs with high-content nanoprecipitates by phase separation, which can generate a near-equiatomic matrix in situ while forming strengthening phases, producing a PH-HEA regardless of the initial atomic ratio. Accordingly, we develop a non-equiatomic alloy that utilizes spinodal decomposition to create a low-misfit coherent nanostructure combining a near-equiatomic disordered face-centered-cubic (FCC) matrix with high-content ductile Ni3Al-type ordered nanoprecipitates. We find that this spinodal order–disorder nanostructure contributes to a strength increase of ~1.5 GPa (>560%) relative to the HEA without precipitation, achieving one of the highest tensile strength (1.9 GPa) among all bulk HEAs reported previously while retaining good ductility (>9%). High entropy alloys usually emphasize equiatomic compositions, which restrict the compositions available to induce strengthening via precipitation. Here the authors use spinodal decomposition in a five-element alloy to obtain high content nanophases and the highest tensile strength reported to date.

355 citations


Journal ArticleDOI
TL;DR: Tan et al. as mentioned in this paper used a selective laser melting process to enhance the strength and ductility of stainless steel 316L by in-process engineering its microstructure into a crystallographic texture.
Abstract: Laser-based powder-bed fusion additive manufacturing or three-dimensional printing technology has gained tremendous attention due to its controllable, digital, and automated manufacturing process, which can afford a refined microstructure and superior strength. However, it is a major challenge to additively manufacture metal parts with satisfactory ductility and toughness. Here we report a novel selective laser melting process to simultaneously enhance the strength and ductility of stainless steel 316L by in-process engineering its microstructure into a crystallographic texture. We find that the tensile strength and ductility of SLM-built stainless steel 316L samples could be enhanced by ~16% and ~40% respectively, with the engineered textured microstructure compared to the common textured microstructure. This is because the favorable nano-twinning mechanism was significantly more activated in the textured stainless steel 316L samples during plastic deformation. In addition, kinetic simulations were performed to unveil the relationship between the melt pool geometry and crystallographic texture. The new additive manufacturing strategy of engineering the crystallographic texture can be applied to other metals and alloys with twinning-induced plasticity. This work paves the way to additively manufacture metal parts with high strength and high ductility. A steel alloy with both high tensile strength and ductility has been three-dimensional (3D) printed by researchers in Singapore. Additive manufacturing builds 3D objects by adding materials layer by layer, a relatively simple process for plastics. However, this manufacturing process is much more difficult for metals, which are susceptible to defects and internal pores. This is particularly problematic when the final product needs excellent mechanical properties, such as hardness or strength. Xipeng Tan and co-workers from Nanyang Technological University used a specific laser scanning strategy to melt metallic powders and form a stainless steel alloy with a zig-zag crystallographic microstructure. The tensile strength and ductility of their stainless steel samples were increased by approximately 16% and 40%, respectively, compared to an alloy with the typical microstructure. A creative approach to substantially enhance both the strength and ductility of SLM-printed metal parts was successfully demonstrated on the ubiquitous marine-grade stainless steel 316L. The new discovery improves the strength and ductility of stainless steel parts by ~16% and 40% compared with the typical 3D printing process and conventional manufacturing methods. Control of the crystallographic texture is key for this breakthrough, which was achieved by tailoring the geometrical features of the melt pool involved in the laser-based 3D printing process. The desired crystallographic texture favors the activation of the nano-twinning mechanism, which simultaneously enhances the strength and ductility.

345 citations


Journal ArticleDOI
TL;DR: The results showed that the tensile strength and moduli of the bionanocomposites increased after being reinforced with SPNCCs and the optimum nanofiller content was 0.5%.

324 citations


Journal ArticleDOI
TL;DR: In this paper, the tensile strength and elongation of the UHP-ECC achieved were 20 MPa and 8.7% respectively, which combines the strain-hardening and multiple crack characteristics and the high strength of mortar matrix.

Journal ArticleDOI
TL;DR: A three-level heterogeneous grain structure with grain sizes spanning the nanometer to micrometer range, imparting a high yield strength well in excess of 1 GPa leads to a sustainable strain hardening rate, a record-wide hysteresis loop in load−unload−reload stress−strain curve and hence high back stresses.
Abstract: Ductility, i.e., uniform strain achievable in uniaxial tension, diminishes for materials with very high yield strength. Even for the CrCoNi medium-entropy alloy (MEA), which has a simple face-centered cubic (FCC) structure that would bode well for high ductility, the fine grains processed to achieve gigapascal strength exhaust the strain hardening ability such that, after yielding, the uniform tensile strain is as low as ∼2%. Here we purposely deploy, in this MEA, a three-level heterogeneous grain structure (HGS) with grain sizes spanning the nanometer to micrometer range, imparting a high yield strength well in excess of 1 GPa. This heterogeneity results from this alloy's low stacking fault energy, which facilitates corner twins in recrystallization and stores deformation twins and stacking faults during tensile straining. After yielding, the elastoplastic transition through load transfer and strain partitioning among grains of different sizes leads to an upturn of the strain hardening rate, and, upon further tensile straining at room temperature, corner twins evolve into nanograins. This dynamically reinforced HGS leads to a sustainable strain hardening rate, a record-wide hysteresis loop in load-unload-reload stress-strain curve and hence high back stresses, and, consequently, a uniform tensile strain of 22%. As such, this HGS achieves, in a single-phase FCC alloy, a strength-ductility combination that would normally require heterogeneous microstructures such as in dual-phase steels.

Journal ArticleDOI
TL;DR: In this article, the additive layer manufacturing (ALM) process is used in the present investigation to manufacture long fibre reinforced composite parts using the MarkOne® 3D-printer, and the results showed that the obtained mechanical properties for ALM composites are not yet comparable to those obtained by traditional methods (pre-pregs).

Journal ArticleDOI
TL;DR: In this paper, high-density 316 L specimens were fabricated by selective laser melting (SLM) and different processing parameters, including laser power (100, 200 W) and scanning strategies (alternating stripes without and with remelting after every layer) were employed to evaluate their impact on microstructure and texture of the specimens.
Abstract: High-density 316 L specimens were fabricated by selective laser melting (SLM). Different processing parameters, including laser power (100, 200 W) and scanning strategies (alternating stripes without and with re-melting after every layer) were employed to evaluate their impact on microstructure and texture of the specimens. Microstructures of the specimens in as-built condition were characterised by columnar grains of austenite with intercellular segregation of Mo, Cr and Si, resulting in creation of non-equilibrium eutectic ferrite. It was found that laser energy density and scanning strategy strongly affect cellular substructure of austenite and amount of ferrite, as well as kind and degree of texture. Specific microstructure of austenite in as-built condition is the cause of almost double increase of yield strength accompanied by much smaller improvement of ultimate tensile strength and 1.4 times reduction of elongation at fracture in comparison of properties of hot-rolled SS316L sheet. Moreover, features of this substructure determine kind of the changes occurring during stress relieving at 800 °C for 5 h (among others, precipitation of sigma-phase strongly activated by presence of ferrite and residual stresses), demonstrated by decreased yield strength value with no significant changes of ultimate tensile strength and elongation. At the same time, an attempt was made to explain some unclearly interpreted observations in the literature related to a correlation between process parameters, microstructure and properties of SLM-processed steel 316 L.

Journal ArticleDOI
TL;DR: In this article, the tensile bond strength of 3D printed geopolymer mortar with respect to printing time gap between layers, nozzle speed and nozzle standoff stance was analyzed and shown that the bond strength is a function of state of interface material between two nearby layers which can be influenced by material strength development rate and 3D printing parameters.

Journal ArticleDOI
TL;DR: The improved properties of the alkali treated CGF indicate that it could be an appropriate material for reinforcement in polymer composites.

Journal ArticleDOI
TL;DR: It is found that a thick interphase cannot produce high interfacial/interphase parameters and significant mechanical properties in nanocomposites because the filler size and aggregates/agglomerates also control these terms.
Abstract: In this study, several simple equations are suggested to investigate the effects of size and density on the number, surface area, stiffening efficiency, and specific surface area of nanoparticles in polymer nanocomposites. In addition, the roles of nanoparticle size and interphase thickness in the interfacial/interphase properties and tensile strength of nanocomposites are explained by various equations. The aggregates/agglomerates of nanoparticles are also assumed as large particles in nanocomposites, and their influences on the nanoparticle characteristics, interface/interphase properties, and tensile strength are discussed. The small size advantageously affects the number, surface area, stiffening efficiency, and specific surface area of nanoparticles. Only 2 g of isolated and well-dispersed nanoparticles with radius of 10 nm (R = 10 nm) and density of 2 g/cm3 produce the significant interfacial area of 250 m2 with polymer matrix. Moreover, only a thick interphase cannot produce high interfacial/interphase parameters and significant mechanical properties in nanocomposites because the filler size and aggregates/agglomerates also control these terms. It is found that a thick interphase (t = 25 nm) surrounding the big nanoparticles (R = 50 nm) only improves the B interphase parameter to about 4, while B = 13 is obtained by the smallest nanoparticles and the thickest interphase.

Journal ArticleDOI
TL;DR: In this paper, gas-atomized powders of two ternary alloys, Al-3.60Mg-1.18Zr and Al 3.57Zr, were densified via laser powder bed fusion.

Journal ArticleDOI
TL;DR: In this article, a series of experiments were carried out to measure workability, setting time, compressive strength, splitting tensile strength, flexural strength and dynamic elastic modulus of AAFS concrete.

Journal ArticleDOI
TL;DR: In this article, a low-alloyed Mg-2Sn-2Ca alloy (in wt.%) is reported, which exhibits tunable ultra-high tensile yield strength (360-440 MPa) depending on extrusion parameters.

Journal ArticleDOI
TL;DR: The fabricated CNTBs, consisting of a large number of components with parallel alignment, defect-free structures, continuous lengths and uniform initial strains, exhibit a tensile strength of 80 GPa, which is far higher than that of any other strong fibre.
Abstract: Carbon nanotubes (CNTs) are one of the strongest known materials. When assembled into fibres, however, their strength becomes impaired by defects, impurities, random orientations and discontinuous lengths. Fabricating CNT fibres with strength reaching that of a single CNT has been an enduring challenge. Here, we demonstrate the fabrication of CNT bundles (CNTBs) that are centimetres long with tensile strength over 80 GPa using ultralong defect-free CNTs. The tensile strength of CNTBs is controlled by the Daniels effect owing to the non-uniformity of the initial strains in the components. We propose a synchronous tightening and relaxing strategy to release these non-uniform initial strains. The fabricated CNTBs, consisting of a large number of components with parallel alignment, defect-free structures, continuous lengths and uniform initial strains, exhibit a tensile strength of 80 GPa (corresponding to an engineering tensile strength of 43 GPa), which is far higher than that of any other strong fibre.

Journal ArticleDOI
TL;DR: In this paper, the micron boron nitride (mBN) fillers were introduced into the above system via in-situ polymerization, finally to prepare the highly thermally conductive, self-healing and recoverable mBN/thiol-epoxy elastomer composites by hot pressing method.

Journal ArticleDOI
TL;DR: The bond between layers in PLA turns out to be extremely strong and is, therefore, highly suitable for use in additive technologies and is a reference of interest in studies involving the determination of mechanical properties of polymer materials manufactured using these technologies.
Abstract: This paper presents a comparative study of the tensile mechanical behaviour of pieces produced using the Fused Deposition Modelling (FDM) additive manufacturing technique with respect to the two types of thermoplastic material most widely used in this technique: polylactide (PLA) and acrylonitrile butadiene styrene (ABS). The aim of this study is to compare the effect of layer height, infill density, and layer orientation on the mechanical performance of PLA and ABS test specimens. The variables under study here are tensile yield stress, tensile strength, nominal strain at break, and modulus of elasticity. The results obtained with ABS show a lower variability than those obtained with PLA. In general, the infill percentage is the manufacturing parameter of greatest influence on the results, although the effect is more noticeable in PLA than in ABS. The test specimens manufactured using PLA perform more rigidly and they are found to have greater tensile strength than ABS. The bond between layers in PLA turns out to be extremely strong and is, therefore, highly suitable for use in additive technologies. The methodology proposed is a reference of interest in studies involving the determination of mechanical properties of polymer materials manufactured using these technologies.

Journal ArticleDOI
TL;DR: The results show that precipitation strengthening, as one of the main strengthening mechanisms, contributes to a tensile yield strength of ~1.52 GPa at room temperature, which heretofore represents the highest strength reported for an HEA with an appreciable failure strain of ~5.2%.
Abstract: High-entropy alloys (HEAs) are a class of metallic materials that have revolutionized alloy design. They are known for their high compressive strengths, often greater than 1 GPa; however, the tensile strengths of most reported HEAs are limited. Here, we report a strategy for the design and fabrication of HEAs that can achieve ultrahigh tensile strengths. The proposed strategy involves the introduction of a high density of hierarchical intragranular nanoprecipitates. To establish the validity of this strategy, we designed and fabricated a bulk Fe25Co25Ni25Al10Ti15 HEA to consist of a principal face-centered cubic (fcc) phase containing hierarchical intragranular nanoprecipitates. Our results show that precipitation strengthening, as one of the main strengthening mechanisms, contributes to a tensile yield strength (σ0.2) of ~1.86 GPa and an ultimate tensile strength of ~2.52 GPa at room temperature, which heretofore represents the highest strength reported for an HEA with an appreciable failure strain of ~5.2%.

Journal ArticleDOI
TL;DR: In this article, the effect of adding steel fibers with different lengths and diameters on the mechanical properties of concrete for three values of concrete strength was investigated, and the results indicated that the addition of different content and lengths of steel fiber with increasing water-to-cement ratios caused significant change in concrete, with an increase of about 10-25% in compressive strength and about 31-47% in direct tensile strength.

Journal ArticleDOI
TL;DR: In this paper, laser shock peening was combined with wire-arc additive manufacturing to refine microstructure, modify stress state and enhance tensile properties of as-printed 2319 aluminum alloy.

Journal ArticleDOI
TL;DR: In this paper, the strength and durability properties of concrete containing RCA were evaluated by a comprehensive experimental investigation involving nine control mixes, and the test results showed that up to 25% of natural crushed stone aggregates in concrete can be replaced with RCA, without significantly affecting the strength of concrete and that the partial replacement of natural aggregates with aggregate can be recommended in areas of moderate exposure conditions.
Abstract: Recycled concrete aggregates (RCA) sourced from waste concrete are a sustainable alternative to natural crushed stone aggregates. The strength and durability properties of concrete containing RCA were evaluated by a comprehensive experimental investigation involving nine control mixes. The variables considered in the experimental study are water cement ratio, cement content in concrete and percentage replacement of coarse aggregate. The strength properties such as compressive strength, modulus of elasticity, splitting tensile strength and flexural strength are studied. Durability properties such as water absorption, sorptivity, acid attack resistance and chloride permeability are also determined. The test results showed that up to 25% of natural crushed stone aggregates in concrete may be replaced with RCA, without significantly affecting the strength of concrete and that the partial replacement of natural aggregates with RCA can be recommended in areas of moderate exposure conditions. Mathematical models developed in the study can be used for the a priori prediction of the strength parameters of RCA concrete. A mix design methodology using the developed models is proposed to aid practicing engineers to determine the mix proportions of RCA concrete.

Journal ArticleDOI
TL;DR: In this paper, a CNT/polymer composite was constructed in low-melt-viscosity semi-crystalline polymers to achieve a superior EMI SE of 48.3 dB at 2.2mm thickness and 5.0% CNT loading.

Journal ArticleDOI
TL;DR: The tensile properties, mode I fracture toughness, fatigue crack growth behavior, and unnotched fatigue strength of additively manufactured Ti-6Al-4V (Ti64) alloy using selective laser melting (SLM) technique were investigated in this article.

Journal ArticleDOI
TL;DR: Li et al. as mentioned in this paper analyzed the deformation and fracture behavior of layered Ti-Al metal composite by in-situ observations during the tensile deformation, and provided a new structural strategy to simultaneously improve strength and ductility.