scispace - formally typeset
Search or ask a question

Showing papers on "Ultimate tensile strength published in 2019"


Journal ArticleDOI
01 Oct 2019-Nature
TL;DR: Atomic-resolution chemical mapping reveals deformation mechanisms in the CrFeCoNiPd alloy that are promoted by pronounced fluctuations in composition and an increase in stacking-fault energy, leading to higher yield strength without compromising strain hardening and tensile ductility.
Abstract: High-entropy alloys are a class of materials that contain five or more elements in near-equiatomic proportions1,2. Their unconventional compositions and chemical structures hold promise for achieving unprecedented combinations of mechanical properties3–8. Rational design of such alloys hinges on an understanding of the composition–structure–property relationships in a near-infinite compositional space9,10. Here we use atomic-resolution chemical mapping to reveal the element distribution of the widely studied face-centred cubic CrMnFeCoNi Cantor alloy2 and of a new face-centred cubic alloy, CrFeCoNiPd. In the Cantor alloy, the distribution of the five constituent elements is relatively random and uniform. By contrast, in the CrFeCoNiPd alloy, in which the palladium atoms have a markedly different atomic size and electronegativity from the other elements, the homogeneity decreases considerably; all five elements tend to show greater aggregation, with a wavelength of incipient concentration waves11,12 as small as 1 to 3 nanometres. The resulting nanoscale alternating tensile and compressive strain fields lead to considerable resistance to dislocation glide. In situ transmission electron microscopy during straining experiments reveals massive dislocation cross-slip from the early stage of plastic deformation, resulting in strong dislocation interactions between multiple slip systems. These deformation mechanisms in the CrFeCoNiPd alloy, which differ markedly from those in the Cantor alloy and other face-centred cubic high-entropy alloys, are promoted by pronounced fluctuations in composition and an increase in stacking-fault energy, leading to higher yield strength without compromising strain hardening and tensile ductility. Mapping atomic-scale element distributions opens opportunities for understanding chemical structures and thus providing a basis for tuning composition and atomic configurations to obtain outstanding mechanical properties. In high-entropy alloys, atomic-resolution chemical mapping shows that swapping some of the atoms for larger, more electronegative elements results in atomic-scale modulations that produce higher yield strength, excellent strain hardening and ductility.

748 citations


Journal ArticleDOI
TL;DR: Density functional theory calculations reveal that the coordination of Cu(II) plays a critical role in accelerating the reversible dissociation of dimethylglyoxime-urethane, which is important to the excellent performance of the self-healing elastomer.
Abstract: It is highly desirable, although very challenging, to develop self-healable materials exhibiting both high efficiency in self-healing and excellent mechanical properties at ambient conditions. Herein, a novel Cu(II)-dimethylglyoxime-urethane-complex-based polyurethane elastomer (Cu-DOU-CPU) with synergetic triple dynamic bonds is developed. Cu-DOU-CPU demonstrates the highest reported mechanical performance for self-healing elastomers at room temperature, with a tensile strength and toughness up to 14.8 MPa and 87.0 MJ m-3 , respectively. Meanwhile, the Cu-DOU-CPU spontaneously self-heals at room temperature with an instant recovered tensile strength of 1.84 MPa and a continuously increased strength up to 13.8 MPa, surpassing the original strength of all other counterparts. Density functional theory calculations reveal that the coordination of Cu(II) plays a critical role in accelerating the reversible dissociation of dimethylglyoxime-urethane, which is important to the excellent performance of the self-healing elastomer. Application of this technology is demonstrated by a self-healable and stretchable circuit constructed from Cu-DOU-CPU.

357 citations


Journal ArticleDOI
TL;DR: In this article, an experimental study on the relation between the 3DCP process parameters and the bond strength of 3D printed concrete is presented, in which the effect of 3 process parameters (interlayer interval time, nozzle height, and surface dehydration) on two mechanical properties (compressive strength and tensile strength, determined through flexural and splitting tests), has been established, in three perpendicular directions.

311 citations


Journal ArticleDOI
TL;DR: In this article, a precipitation-strengthened FeCoNiCrTi0.2 high-entropy alloy strengthened by two types of coherent nano-precipitates but with the same composition was fabricated, and its tensile properties at room and cryogenic temperatures (77 K) and the corresponding defect-structure evolution were investigated.

305 citations


Journal ArticleDOI
TL;DR: In this paper, the authors present a heterogeneous-structures-architecting strategy, in which they design bulk high-entropy alloys with the largelyenhanced strength-ductility trade-off, possessing a yield strength of 711 MPa, a tensile strength of 928 MPa and a uniform elongation of 30.3%.

285 citations


Journal ArticleDOI
TL;DR: This review explores the multiple levels of heterogeneities in multi-principal-element alloys that contribute to lattice friction and back stress hardening, as a general strategy towards strength–ductility synergy beyond current benchmark ranges.
Abstract: Conventional alloys are usually based on a single host metal. Recent high-entropy alloys (HEAs), in contrast, employ multiple principal elements. The strength of HEAs is considerably higher than traditional solid solutions, as the many constituents lead to a rugged energy landscape that increases the resistance to dislocation motion, which can also be retarded by other heterogeneities. The wide variety of nanostructured heterogeneities in HEAs, including those generated on the fly during tensile straining, also offer elevated strain-hardening capability that promotes uniform tensile ductility. Citing recent examples, this review explores the multiple levels of heterogeneities in multi-principal-element alloys that contribute to lattice friction and back stress hardening, as a general strategy towards strength-ductility synergy beyond current benchmark ranges.

255 citations


Journal ArticleDOI
TL;DR: In this article, the effect of build orientation, layer thickness and fiber volume content on the mechanical performance of 3D printed continuous fiber reinforced composites components manufactured by a desktop 3D printer was investigated.

254 citations


Journal ArticleDOI
TL;DR: The effects of major factors on properties of starch-based films can be influenced by many factors, including types of starches, temperature and time during film formation, plasticizers, co-biopolymers, and storage conditions.

242 citations


Journal ArticleDOI
TL;DR: In this paper, the mechanical properties of high performance concrete reinforced with basalt fiber and polypropylene fibers were investigated, and a conversion relationship between flexural strength and cube compressive strength was proposed.

239 citations


Journal ArticleDOI
TL;DR: In this paper, the influence of Laves phases on the room temperature tensile properties of laser additive manufactured Inconel 718 has been investigated, and a yield strength model has been developed to reveal this influence in terms of numbers.

232 citations


Journal ArticleDOI
TL;DR: In this article, an optimal basalt fiber content was determined basing firstly on suitable printability and then on mechanical performance using a self-developed 3D printer for extrusion of the cementitious material and also for mechanical enhancement of fiber alignment along the print direction.

Journal ArticleDOI
TL;DR: In this paper, the potential of chitosan/PVA films containing black carrot anthocyanins as a natural pH indicator and bentonite as a nano-filler, for intelligent packaging applications was investigated.

Journal ArticleDOI
TL;DR: In this article, cold-rolling and annealing an equiatomic CrCoNi alloy was used to produce heterogeneous, partially recrystallized microstructures. And the results showed that this approach dramatically increased the yield strength (to ∼1100 MPa) while retaining good ductility (total elongation ∼23%).

Journal ArticleDOI
12 Jul 2019-Science
TL;DR: A muscle type is described that provides higher performance, in which the guest that drives actuation is a sheath on a twisted or coiled core that can be an inexpensive yarn, and Theory predicts the observed performance advantages of sheath-run muscles.
Abstract: Although guest-filled carbon nanotube yarns provide record performance as torsional and tensile artificial muscles, they are expensive, and only part of the muscle effectively contributes to actuation. We describe a muscle type that provides higher performance, in which the guest that drives actuation is a sheath on a twisted or coiled core that can be an inexpensive yarn. This change from guest-filled to sheath-run artificial muscles increases the maximum work capacity by factors of 1.70 to 2.15 for tensile muscles driven electrothermally or by vapor absorption. A sheath-run electrochemical muscle generates 1.98 watts per gram of average contractile power-40 times that for human muscle and 9.0 times that of the highest power alternative electrochemical muscle. Theory predicts the observed performance advantages of sheath-run muscles.

Journal ArticleDOI
TL;DR: In this article, the authors reported the methods of oxygen-free fast drying assisted solution casting and melt blending for fabricating advanced ultrathin two-dimensional (2D) titanium carbide (Ti3C2Tx)/polypropylene nanocomposites with significantly enhanced initial degradation temperature (79.1°C increase), tensile strength (35.3%), ductility (674.6% increase), and storage modulus (102.2% increase).

Journal ArticleDOI
Yan Qin1, Yunpeng Liu1, Huimin Yong1, Jing Liu1, Xin Zhang1, Jun Liu1 
TL;DR: Starch-LRA films could be used as active and intelligent packaging films in food industry and exhibited remarkable color variations with the quality change of pork.

Journal ArticleDOI
Tieqiang Liang1, Guohou Sun1, Lele Cao1, Jian Li1, Lijuan Wang1 
TL;DR: In this article, an intelligent Artemisia sphaerocephala Krasch (ASKG)-based film capable of anchoring the natural dye extracted from red cabbage (RCA) was presented.

Journal ArticleDOI
TL;DR: In this article, Pomegranate peel powder was incorporated into fish gelatin film-forming solution (FFS) to develop an active packaging film and the physical, mechanical, antioxidant and antimicrobial properties of the films were investigated.

Journal ArticleDOI
TL;DR: In this article, a comprehensive study on the effect of cellular structure and melt pool boundary (MPB) condition on the mechanical properties, deformation and failure behavior of AlSi10Mg alloy processed by selective laser melting (SLM).
Abstract: We describe here a comprehensive study on the effect of cellular structure and melt pool boundary (MPB) condition on the mechanical properties, deformation and failure behavior of AlSi10Mg alloy processed by selective laser melting (SLM). The morphology of melt pool (MP) on the load bearing face of tensile samples was significantly different with build directions. It resulted in different mechanical properties of the samples with different build directions. Furthermore, the microstructure analysis revealed that the MP in the SLM AlSi10Mg alloy mainly consisted of columnar α-Al grains which were made of ultra-fine elongated cellular structure. Electron back-scatter diffraction (EBSD) analysis revealed that the long axis of cellular structure and columnar grains were parallel to , which resulted in fiber texture in SLM AlSi10Mg alloy. However, Schmid factor calculation demonstrated that the anisotropy of mechanical properties of the SLM AlSi10Mg alloy built with different direction was mainly dependent on the distribution of MPB on the load bearing face, and not texture. The defects including pores, residual stress and heat affected zone (HAZ) located at MPB made it the weakest part in the SLM AlSi10Mg. The sample built along horizontal direction exhibited good combination of strength and plasticity and is attributed to the lowest fraction of MPBs that withstand load during tensile. MPB had strong influence on the mechanical properties and failure behavior of SLM AlSi10Mg built with different directions.

Journal ArticleDOI
TL;DR: It is shown that AA7075 can be safely arc welded without hot cracks by introducing nanoparticle-enabled phase control during welding by adding nanoparticles to a weld filler rod.
Abstract: Lightweight materials are of paramount importance to reduce energy consumption and emissions in today's society. For materials to qualify for widespread use in lightweight structural assembly, they must be weldable or joinable, which has been a long-standing issue for high strength aluminum alloys, such as 7075 (AA7075) due to their hot crack susceptibility during fusion welding. Here, we show that AA7075 can be safely arc welded without hot cracks by introducing nanoparticle-enabled phase control during welding. Joints welded with an AA7075 filler rod containing TiC nanoparticles not only exhibit fine globular grains and a modified secondary phase, both which intrinsically eliminate the materials hot crack susceptibility, but moreover show exceptional tensile strength in both as-welded and post-weld heat-treated conditions. This rather simple twist to the filler material of a fusion weld could be generally applied to a wide range of hot crack susceptible materials.

Journal ArticleDOI
TL;DR: In this article, a theoretical model was established to predict the ultimate tensile strength of FDM PLA materials based on transverse isotropic hypothesis, classical lamination theory and Hill-Tsai anisotropic yield criterion, and then verified by tensile experiments.
Abstract: 3D Printing is widely used in scientific researches and engineering applications, ranging from aerospace to biomedicine. However little is known about the mechanical properties of 3D printing materials. In order to promote the mechanical analysis and design of 3D printing structures, the ultimate tensile strength of FDM PLA materials with different printing angles were studied theoretically and experimentally. A theoretical model was firstly established to predict the ultimate tensile strength of FDM PLA materials based on transverse isotropic hypothesis, classical lamination theory and Hill-Tsai anisotropic yield criterion, and then verified by tensile experiments. Compared with previous models, this model provided two kinds of in-plane shear modulus calculation methods, so the calculation results were more reliable. The specimens, designed according to the current plastic-multipurpose test specimens standard ISO 527-2-2012, were printed in seven different angles ( 0 ∘ , 15 ∘ , 30 ∘ , 45 ∘ , 60 ∘ , 75 ∘ , 90 ∘ ) with three layer thicknesses (0.1 mm, 0.2 mm, 0.3 mm) for each angle. The relative residual sum of squares between theoretical data and experimental data were all close to zero, so the results that the theoretical model can accurately predict the ultimate tensile strength of FDM materials for all angles and thicknesses were confirmed. It was also found that the ultimate tensile strength decreased as the printing angle becomes smaller or the layer becomes thicker. This theoretical model and experimental method can also be applied to other 3D printing materials fabricated by FDM or SLA techniques.

Journal ArticleDOI
TL;DR: The influence of annealing at different temperatures (573, 873, 1273, 1373 and 1673 K) on the stability of 316L stainless steel fabricated by SLM has been investigated and the changes induced by the heat treatment have been used to understand the corresponding variations of the mechanical properties of the specimens under tensile loading as mentioned in this paper.
Abstract: The influence of annealing at different temperatures (573, 873, 1273, 1373 and 1673 K) on the stability of phases, composition and microstructure of 316L stainless steel fabricated by SLM has been investigated and the changes induced by the heat treatment have been used to understand the corresponding variations of the mechanical properties of the specimens under tensile loading. Annealing has no effect on phase formation: a single-phase austenite is observed in all specimens investigated here. In addition, annealing does not change the random crystallographic orientation observed in the as-synthesized material. The complex cellular microstructure with fine subgrain structures characteristic of the as-SLM specimens is stable up to 873 K. The cell size increases with increasing annealing temperature until the cellular microstructure can no longer be observed at high temperatures (T ≥ 1273 K). The strength of the specimens decreases with increasing annealing temperature as a result of the microstructural coarsening. The excellent combination of strength and ductility exhibited by the as-synthesized material can be ascribed to the complex cellular microstructure and subgrains along with the misorientation between grains, cells, cell walls and subgrains.

Journal ArticleDOI
TL;DR: In this article, three major process parameters such as layer height, raster angle, and infill density have been considered to study their effects on mechanical properties of acrylonitrile butadiene styrene (ABS) as this material is widely used industrial thermoplastic in FDM technology.
Abstract: Fused deposition modeling (FDM) technology works with specialized 3D printers and production-grade thermoplastics to build robust, durable, and dimensionally stable parts with the best accuracy and repeatability of any other available 3D printing technology. FDM is one of the highly used additive manufacturing technology due to its ability to manufacture very complex geometries. However, the critical problems with this technology have been to balance the ability to produce esthetically appealing products with functionality and properties at the lowest cost possible. In this study, three major process parameters such as layer height, raster angle, and infill density have been considered to study their effects on mechanical properties of acrylonitrile butadiene styrene (ABS) as this material is widely used industrial thermoplastic in FDM technology. The test results show a clear demonstration of the considered factors over the mechanical variables measured. Response surface methodology is used for the validation of the experimental data and the future prediction of the test results. It was found that the optimum parameters for 3D printing using ABS are 80% infill percentage, 0.5 mm layer thickness, and 65° raster angle. The achieved experimental ultimate tensile strength, elastic modulus, yield strength, fracture strain, and toughness (energy absorption) are 31.57 MPa, 774.50 MPa, 19.95 MPa, 0.094 mm/mm, and 2.28 Jm−3, respectively. Mathematical equation has been developed using surface response methodology which can be used to predict the ABS tensile properties numerically and also to predict the optimum parameter for ultimate properties.

Journal ArticleDOI
04 May 2019-Polymers
TL;DR: The promising results in the present study prove the feasibility of 3D printed PLA-graphene composites for potential use in different applications such as biomedical engineering.
Abstract: Fused filament fabrication (FFF) is a promising additive manufacturing (AM) technology due to its ability to build thermoplastics parts with advantages in the design and optimization of models with complex geometries, great design flexibility, recyclability and low material waste. This technique has been extensively used for the manufacturing of conceptual prototypes rather than functional components due to the limited mechanical properties of pure thermoplastics parts. In order to improve the mechanical performance of 3D printed parts based on polymeric materials, reinforcements including nanoparticles, short or continuous fibers and other additives have been adopted. The addition of graphene nanoplatelets (GNPs) to plastic and polymers is currently under investigation as a promising method to improve their working conditions due to the good mechanical, electrical and thermal performance exhibited by graphene. Although research shows particularly promising improvement in thermal and electrical conductivities of graphene-based nanocomposites, the aim of this study is to evaluate the effect of graphene nanoplatelet reinforcement on the mechanical properties, dimensional accuracy and surface texture of 3D printed polylactic acid (PLA) structures manufactured by a desktop 3D printer. The effect of build orientation was also analyzed. Scanning Electron Microscope (SEM) images of failure samples were evaluated to determine the effects of process parameters on failure modes. It was observed that PLA-Graphene composite samples showed, in general terms, the best performance in terms of tensile and flexural stress, particularly in the case of upright orientation (about 1.5 and 1.7 times higher than PLA and PLA 3D850 samples, respectively). In addition, PLA-Graphene composite samples showed the highest interlaminar shear strength (about 1.2 times higher than PLA and PLA 3D850 samples). However, the addition of GNPs tended to reduce the impact strength of the PLA-Graphene composite samples (PLA and PLA 3D850 samples exhibited an impact strength about 1.2-1.3 times higher than PLA-Graphene composites). Furthermore, the addition of graphene nanoplatelets did not affect, in general terms, the dimensional accuracy of the PLA-Graphene composite specimens. In addition, PLA-Graphene composite samples showed, in overall terms, the best performance in terms of surface texture, particularly when parts were printed in flat and on-edge orientations. The promising results in the present study prove the feasibility of 3D printed PLA-graphene composites for potential use in different applications such as biomedical engineering.

Journal ArticleDOI
21 Aug 2019
TL;DR: In this article, a study was conducted using AA6351 aluminum alloy in conjunction with AlN particles whose percentages of incorporation were 4, 8, 12, 16% and 20 wt.% in the ascending order.
Abstract: In the current trend, the hard ceramic particles reinforced aluminum matrix composites (AMCs) is extensively being exploited as a composite which shall be utilized for various engineering applications. In the present research, the Al-Si-Mg (AA6351) composite incorporated with aluminium nitride (AlN) filler were prepared via novel and low cost melt stirring process. This study was conducted using AA6351 aluminum alloy in conjunction with AlN particles whose percentages of incorporation were 4%, 8%, 12%, 16% and 20 wt.% in the ascending. The stir casted composites and the base alloy were characterized via X-ray diffraction (XRD), scanning electron microscope (SEM) and energy dispersive X-ray analysis (EDAX). EDAX and XRD plots prove the occurrence of AlN filler contents in the synthesized AMCs. SEM studies exhibit the even dispersion of the reinforcement particles in the Al matrix. The effects of AlN contents on the mechanical characteristics of AA6351 matrix composites were examined. The dry sliding wear characteristics of the prepared composites was tested employing pin on disc machine. The mechanical and wear behavior of the AMCs had shown a great enhancement by the incorporation of AlN particles into AA6351 matrix alloy. The test outcomes discovered that Al/20 wt.% AlN composites had revealed superior wear resistance, hardness, yield strength and tensile strength than the AA6351 base alloy

Journal ArticleDOI
TL;DR: In this article, the authors reported the first time manufacturing of hybrid fiber reinforced biodegradable composites using sisal and hemp fiber with polylactic acid employing melt processing and injection molding techniques.

Journal ArticleDOI
TL;DR: In this paper, the effect of elemental combinations on the friction stress and Hall-Petch relationship in medium entropy alloys (MEAs) and high entropy alloy (HEAs) was reported.

Journal ArticleDOI
TL;DR: The results of scanning electron microscopic and atomic force microscopic analysis exhibited that impurities and wax on the outer surface of the ARBFs were removed after the alkali treatment, concluding that ARBF's is the appropriate material to use as a reinforcement in fibre reinforced plastics.

Journal ArticleDOI
TL;DR: A low-cost Co-free eutectic high entropy alloy (EHEA) system was designed, successfully prepared and characterized in this article, which showed excellent mechanical properties with an ultimate strength of 1357 MPa and a total elongation of 6.4% at the cast condition.

Journal ArticleDOI
TL;DR: In this paper, the properties of potato starch/chitosan (PS/CS) films cross-linked with citric acid (CA) at different concentrations were investigated via a solution blending-casting method, and their structure, water resistance, physical and mechanical properties, and antimicrobial activity were investigated.