scispace - formally typeset
Search or ask a question

Showing papers on "Ultraviolet light published in 2019"


Journal ArticleDOI
08 Nov 2019-Science
TL;DR: Doping of formamidinium lead iodide with methylenediammonium dichloride maintains the band gap of the active α-phase of the FAPbI3 phase and achieves a certified short-circuit current density of between 26.1 and 26.7 milliamperes per square centimeter.
Abstract: In general, mixed cations and anions containing formamidinium (FA), methylammonium (MA), caesium, iodine, and bromine ions are used to stabilize the black α-phase of the FA-based lead triiodide (FAPbI3) in perovskite solar cells. However, additives such as MA, caesium, and bromine widen its bandgap and reduce the thermal stability. We stabilized the α-FAPbI3 phase by doping with methylenediammonium dichloride (MDACl2) and achieved a certified short-circuit current density of between 26.1 and 26.7 milliamperes per square centimeter. With certified power conversion efficiencies (PCEs) of 23.7%, more than 90% of the initial efficiency was maintained after 600 hours of operation with maximum power point tracking under full sunlight illumination in ambient conditions including ultraviolet light. Unencapsulated devices retained more than 90% of their initial PCE even after annealing for 20 hours at 150°C in air and exhibited superior thermal and humidity stability over a control device in which FAPbI3 was stabilized by MAPbBr3.

823 citations


Journal ArticleDOI
TL;DR: In this article, the authors reviewed recent progress in the development of AlGaN-based deep-ultraviolet light-emitting devices and described the key obstacles to enhancing their efficiency and how to improve their performance.
Abstract: By alloying GaN with AlN the emission of AlGaN light-emitting diodes can be tuned to cover almost the entire ultraviolet spectral range (210–400 nm), making ultraviolet light-emitting diodes perfectly suited to applications across a wide number of fields, whether biological, environmental, industrial or medical. However, technical developments notwithstanding, deep-ultraviolet light-emitting diodes still exhibit relatively low external quantum efficiencies because of properties intrinsic to aluminium-rich group III nitride materials. Here, we review recent progress in the development of AlGaN-based deep-ultraviolet light-emitting devices. We also describe the key obstacles to enhancing their efficiency and how to improve their performance in terms of defect density, carrier-injection efficiency, light extraction efficiency and heat dissipation. This Review covers recent progress in AlGaN-based deep-ultraviolet light-emitting devices. The key technologies of how to improve their performance, carrier-injection efficiency, light extraction efficiency and heat dissipation are discussed.

678 citations


Journal ArticleDOI
TL;DR: In this paper, a colour-tunable, ultra-long organic phosphorescence (UOP) can be tuned by varying the excitation wavelength, allowing dynamic colour tuning from the violet to the green part of the visible spectrum.
Abstract: Materials exhibiting long-lived, persistent luminescence in the visible spectrum are useful for applications in the display, information encryption and bioimaging sectors1–4. Herein, we report the development of several organic phosphors that provide colour-tunable, ultra-long organic phosphorescence (UOP). The emission colour can be tuned by varying the excitation wavelength, allowing dynamic colour tuning from the violet to the green part of the visible spectrum. Our experimental data reveal that these organic phosphors can have an ultra-long lifetime of 2.45 s and a maximum phosphorescence efficiency of 31.2%. Furthermore, we demonstrate the applications of colour-tunable UOP for use in a multicolour display and visual sensing of ultraviolet light in the range from 300 to 360 nm. The findings open the opportunity for the development of smart luminescent materials and sensors with dynamically controlled phosphorescence. Organic phosphors with ultra-long lifetimes and an emission colour that can be tuned by the excitation wavelength are reported.

467 citations


Journal ArticleDOI
TL;DR: In this paper, the authors highlight the designs and mechanisms of different SMONs with various patterns (e.g., nanoparticles, nanowires, nanosheets, nanorods, nanotubes, nanofilms, etc.) for gas sensors to detect various hazardous gases at room temperature.
Abstract: High-precision gas sensors operated at room temperature are attractive for various real-time gas monitoring applications, with advantages including low energy consumption, cost effectiveness and device miniaturization/flexibility. Studies on sensing materials, which play a key role in good gas sensing performance, are currently focused extensively on semiconducting metal oxide nanostructures (SMONs) used in the conventional resistance type gas sensors. This topical review highlights the designs and mechanisms of different SMONs with various patterns (e.g. nanoparticles, nanowires, nanosheets, nanorods, nanotubes, nanofilms, etc.) for gas sensors to detect various hazardous gases at room temperature. The key topics include (1) single phase SMONs including both n-type and p-type ones; (2) noble metal nanoparticle and metal ion modified SMONs; (3) composite oxides of SMONs; (4) composites of SMONs with carbon nanomaterials. Enhancement of the sensing performance of SMONs at room temperature can also be realized using a photo-activation effect such as ultraviolet light. SMON based mechanically flexible and wearable room temperature gas sensors are also discussed. Various mechanisms have been discussed for the enhanced sensing performance, which include redox reactions, heterojunction generation, formation of metal sulfides and the spillover effect. Finally, major challenges and prospects for the SMON based room temperature gas sensors are highlighted.

434 citations


Journal ArticleDOI
TL;DR: The diagnostic approach as well as the etiopathogenetic rationale and clinical evidence for the management of SLE are reviewed, which includes lifestyle changes such as avoidance of ultraviolet light; prevention of comorbidities including coronary artery disease, osteoporosis, infections, and drug toxicities; use of immunomodulators and targeted therapy.

318 citations


Journal ArticleDOI
07 Mar 2019-Cell
TL;DR: Exome sequences of 1,001 human cancer cell lines and 577 xenografts revealed most common mutational signatures, indicating past activity of the underlying processes, usually in appropriate cancer types, and potentially retain patterns of activity and regulation operative in primary human cancers.

270 citations


Journal ArticleDOI
TL;DR: In this article, a broad range of research efforts have been devoted to enhancing the optical and electrical properties of TiO2, resulting in improved photocatalytic activity, including the introduction of intrinsic defects and foreign species into the TiO 2 lattice, morphology and crystal facet control, and the development of unique mesocrystal structures.
Abstract: Titanium dioxide (TiO2) nanomaterials have garnered extensive scientific interest since 1972 and have been widely used in many areas, such as sustainable energy generation and the removal of environmental pollutants. Although TiO2 possesses the desired performance in utilizing ultraviolet light, its overall solar activity is still very limited because of a wide bandgap (3.0–3.2 eV) that cannot make use of visible light or light of longer wavelength. This phenomenon is a deficiency for TiO2 with respect to its potential application in visible light photocatalysis and photoelectrochemical devices, as well as photovoltaics and sensors. The high overpotential, sluggish migration, and rapid recombination of photogenerated electron/hole pairs are crucial factors that restrict further application of TiO2. Recently, a broad range of research efforts has been devoted to enhancing the optical and electrical properties of TiO2, resulting in improved photocatalytic activity. This review mainly outlines state-of-the-art modification strategies in optimizing the photocatalytic performance of TiO2, including the introduction of intrinsic defects and foreign species into the TiO2 lattice, morphology and crystal facet control, and the development of unique mesocrystal structures. The band structures, electronic properties, and chemical features of the modified TiO2 nanomaterials are clarified in detail along with details regarding their photocatalytic performance and various applications.

249 citations


Journal ArticleDOI
TL;DR: Different techniques of nanoparticles’ preparation, with primary focus on metal nanoparticles, are introduced and basic properties of colloidal solutions are described.
Abstract: The versatile family of nanoparticles is considered to have a huge impact on the different fields of materials research, mostly nanoelectronics, catalytic chemistry and in study of cytocompatibility, targeted drug delivery and tissue engineering. Different approaches for nanoparticle preparation have been developed, not only based on "bottom up" and "top down" techniques, but also several procedures of effective nanoparticle modifications have been successfully used. This paper is focused on different techniques of nanoparticles' preparation, with primary focus on metal nanoparticles. Dispergation methods such as laser ablation and vacuum sputtering are introduced. Condensation methods such as reduction with sodium citrate, the Brust-Schiffrin method and approaches based on ultraviolet light or biosynthesis of silver and gold are also discussed. Basic properties of colloidal solutions are described. Also a historical overview of nanoparticles are briefly introduced together with short introduction to specific properties of nanoparticles and their solutions.

205 citations


Journal ArticleDOI
TL;DR: A hybrid Si-based photodetection scheme by incorporating CsPbBr3 perovskite nanocrystals (NCs) with a high photoluminescence quantum yield (PLQY) and a fast photolity decay time as a UV-to-visible colour-converting layer for high-speed solar-blind UV communication is reported.
Abstract: Optical wireless communication (OWC) using the ultra-broad spectrum of the visible-to-ultraviolet (UV) wavelength region remains a vital field of research for mitigating the saturated bandwidth of radio-frequency (RF) communication. However, the lack of an efficient UV photodetection methodology hinders the development of UV-based communication. The key technological impediment is related to the low UV-photon absorption in existing silicon photodetectors, which offer low-cost and mature platforms. To address this technology gap, we report a hybrid Si-based photodetection scheme by incorporating CsPbBr3 perovskite nanocrystals (NCs) with a high photoluminescence quantum yield (PLQY) and a fast photoluminescence (PL) decay time as a UV-to-visible colour-converting layer for high-speed solar-blind UV communication. The facile formation of drop-cast CsPbBr3 perovskite NCs leads to a high PLQY of up to ~73% and strong absorption in the UV region. With the addition of the NC layer, a nearly threefold improvement in the responsivity and an increase of ~25% in the external quantum efficiency (EQE) of the solar-blind region compared to a commercial silicon-based photodetector were observed. Moreover, time-resolved photoluminescence measurements demonstrated a decay time of 4.5 ns under a 372-nm UV excitation source, thus elucidating the potential of this layer as a fast colour-converting layer. A high data rate of up to 34 Mbps in solar-blind communication was achieved using the hybrid CsPbBr3–silicon photodetection scheme in conjunction with a 278-nm UVC light-emitting diode (LED). These findings demonstrate the feasibility of an integrated high-speed photoreceiver design of a composition-tuneable perovskite-based phosphor and a low-cost silicon-based photodetector for UV communication. A silicon-based receiver that incorporates perovskite nanocrystals efficiently detects ultraviolet signals, paving the way towards high-speed, high-bandwidth UV wireless communication. The photodetector (PD), developed by Boon S. Ooi of King Abdullah University of Science and Technology (KAUST) and colleagues in Saudi Arabia, is less bulky and cheaper to manufacture than currently available receivers. It builds on technologically advanced silicon-based PDs, which are compact and widely available, but respond best to higher wavelength green light. Incorporating cesium lead bromide (CsPbBr3) perovskite nanocrystals into a silicon-based PD facilitated efficient conversion of UV into green light. The team demonstrated that their receiver could be used in high-speed UV-based communication, paving the way for the use of perovskite-based materials in terrestrial and underwater UV-Internet systems.

205 citations


Journal ArticleDOI
TL;DR: A near-infrared (NIR) light–responsive nanocarrier of CRISPR-Cas9 for cancer therapeutics based on upconversion nanoparticles (UCNPs) is designed and successfully inhibited the proliferation of tumor cell via NIR light–activated gene editing both in vitro and in vivo.
Abstract: As an RNA-guided nuclease, CRISPR-Cas9 offers facile and promising solutions to mediate genome modification with respect to versatility and high precision. However, spatiotemporal manipulation of CRISPR-Cas9 delivery remains a daunting challenge for robust effectuation of gene editing both in vitro and in vivo. Here, we designed a near-infrared (NIR) light–responsive nanocarrier of CRISPR-Cas9 for cancer therapeutics based on upconversion nanoparticles (UCNPs). The UCNPs served as “nanotransducers” that can convert NIR light (980 nm) into local ultraviolet light for the cleavage of photosensitive molecules, thereby resulting in on-demand release of CRISPR-Cas9. In addition, by preparing a single guide RNA targeting a tumor gene (polo-like kinase-1), our strategies have successfully inhibited the proliferation of tumor cell via NIR light–activated gene editing both in vitro and in vivo. Overall, this exogenously controlled method presents enormous potential for targeted gene editing in deep tissues and treatment of a myriad of diseases.

171 citations


Journal ArticleDOI
Han Hu1, Haixuan Zhang1, Ya Chen1, Yujia Chen1, Li Zhuang1, Huase Ou1 
TL;DR: In this paper, a metal-organic-frameworks (MOF) was used to degrade tris(2-chloroethyl) phosphate (TCEP) in real water matrixes.

Journal ArticleDOI
Yujie Liu1, Haixia Liu1, Huamin Zhou1, Tian-Duo Li1, Lunan Zhang1 
TL;DR: In this article, a Z-scheme photocatalytic system mechanism of N-ZnO/g-C3N4 composites was proposed for the enhanced H2 evolution and degradation rate.

Journal ArticleDOI
TL;DR: These findings provide a quantitative framework for evaluating ARG fate during disinfection/oxidation, and support using qPCR as a proxy for tracking ARG deactivation under carefully selected circumstances.
Abstract: This work investigated degradation (measured by qPCR) and biological deactivation (measured by culture-based natural transformation) of extra- and intracellular antibiotic resistance genes (eARGs and iARGs) by free available chlorine (FAC), NH2Cl, O3, ClO2, and UV light (254 nm), and of eARGs by •OH, using a chromosomal ARG (blt) of multidrug-resistant Bacillus subtilis 1A189. Rate constants for degradation of four 266–1017 bp amplicons adjacent to or encompassing the acfA mutation enabling blt overexpression increased in proportion to #AT+GC bps/amplicon, or in proportion to #5′-GG-3′ or 5′-TT-3′ doublets/amplicon, with respective values ranging from 0.59 to 2.3 (×1011 M–1 s–1) for •OH, 1.8–6.9 (×104 M–1 s–1) for O3, 3.9–9.2 (×103 M–1 s–1) for FAC, 0.35–1.2(×101 M–1 s–1) for ClO2, and 2.0–8.8 (×10–2 cm2/mJ) for UV at pH 7, and from 1.7–4.4 M–1 s–1 for NH2Cl at pH 8. For FAC, NH2Cl, O3, ClO2, and UV, ARG deactivation paralleled degradation of amplicons approximating a ∼800–1000 bp acfA-flanking sequence r...

Journal ArticleDOI
07 Jan 2019-ACS Nano
TL;DR: In this article, a nanolongan delivery system was designed, which possessed a typical structure of one core (up-conversion nanoparticles, UCNP) in one gel particle (Fe3+ cross-linked oxidized starch) with multiple on-demand conversions.
Abstract: As a type of programmed cell death, ferroptosis is distinct from apoptosis. The combination of the two thus provides a promising modality with which to significantly improve anticancer treatment efficacy. To fully utilize this combination, we herein designed a nanolongan delivery system, which possessed a typical structure of one core (up-conversion nanoparticles, UCNP) in one gel particle (Fe3+ cross-linked oxidized starch) with multiple on-demand conversions. The charge conversion of the nanolongan surface in a slightly acidic microenvironment enhanced circulation time for utilizing the enhanced permeability and retention effect, enabled efficient uptake by tumor cells, and induced subsequently lysosomal escape. As the core component, the UCNP with light conversion from near-infrared light to ultraviolet light circumvented the impediment of limited penetration depth and enabled the reduction of Fe3+ to Fe2+. Accordingly, gel networks of nanolongan could be deconstructed due to this valence conversion, l...

Journal ArticleDOI
TL;DR: It is successfully demonstrated that cell-laden microgels can be assembled into complicated 3D tissue structures via freeform reversible embedding of suspended hydrogels (FRESH) 3D bioprinting.

Journal ArticleDOI
06 Mar 2019
TL;DR: The formation of a cancerization field is described and how it can apply in precision cancer risk diagnosis is described, with or without expansion of physiological patches of clonal cells.
Abstract: Cancers develop due to the accumulation of genetic and epigenetic alterations. Genetic alterations are induced by aging, mutagenic chemicals, ultraviolet light, and other factors; whereas, epigenetic alterations are mainly by aging and chronic inflammation. The accumulation and patterns of alterations in normal cells reflect our past exposure levels and life history. Most accumulated alterations are considered as passengers, but their accumulation is correlated with cancer drivers. This has been shown for aberrant DNA methylation but has only been speculated for genetic alterations. However, recent technological advancements have enabled measurement of rare point mutations, and studies have shown that their accumulation levels are indeed correlated with cancer risk. When the accumulation levels of aberrant DNA methylation and point mutations are combined, risk prediction becomes even more accurate. When high levels of alterations accumulate, the tissue has a high risk of developing cancer or even multiple cancers and is considered as a “cancerization field”, with or without expansion of physiological patches of clonal cells. In this review, we describe the formation of a cancerization field and how we can apply its detection in precision cancer risk diagnosis.

Journal ArticleDOI
TL;DR: The prepared anatase/rutile TiO2 photocatalysts are a potential candidate in the removal of the organic dyes from colored wastewater using inexpensive titanium tetrachloride as a titanium source.
Abstract: Anatase/rutile mixed-phase TiO2 nanoparticles were synthesized through a simple sol-gel route with further calcination using inexpensive titanium tetrachloride as a titanium source, which effectively reduces the production cost. The structural and optical properties of the prepared materials were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and UV-vis adsorption. The specific surface area was also analyzed by Brunauer–Emmett–Teller (BET) method. The anatase/rutile mixed-phase TiO2 nanocomposites containing of rod-like, cuboid, and some irregularly shaped anatase nanoparticles (exposed {101} facets) with sizes ranging from tens to more than 100 nanometers, and rod-like rutile nanoparticles (exposed {110} facets) with sizes ranging from tens to more than 100 nanometers. The photocatalytic activities of the obtained anatase/rutile mixed-phase TiO2 nanoparticles were investigated and compared by evaluating the degradation of hazardous dye methylene blue (MB) under ultraviolet light illumination. Compared to the commercial Degussa P25-TiO2, the mixed-phase TiO2 nanocomposites show better photocatalytic activity, which can be attributed to the optimal anatase to rutile ratio and the specific exposed crystal surface on the surface. The anatase/rutile TiO2 nanocomposites obtained at pH 1.0 (pH1.0-TiO2) show the best photocatalytic activity, which can be attributed to the optimal heterojunction structure, the smaller average particle size, and the presence of a specific exposed crystal surface. The enhanced photocatalytic activity makes the prepared anatase/rutile TiO2 photocatalysts a potential candidate in the removal of the organic dyes from colored wastewater.

Journal ArticleDOI
TL;DR: In this paper, an up-to-date review on the development of inorganic PSCs tailored by various inorganic perovskite materials with gradually changed optical properties and stability, as well as the film-making methods and interfacial engineering technologies.
Abstract: Perovskite solar cells (PSCs) have attracted tremendous interest because of their rapid improvement in power conversion efficiency (PCE) from the initial PCE of 3.8% for the first prototype to the certified PCE of 25.2% in 2019. However, the inherent chemical instability of organic–inorganic hybrid perovskite halides influenced by moisture, heat and ultraviolet light is still a critical issue for them to meet application-specific requirements owing to the weak-bonded organic components in the hybrid crystal structure. The use of all-inorganic perovskites CsPbI3−xBrx (x = 0, 1, 2, and 3) as light-harvesters by completely substituting organic species with inorganic Cs+ ions has been recently regarded as a promising solar conversion technology. Since the initial efficiency of 2.9% achieved in 2015, the highest PCE record for inorganic PSCs has risen to 18.4% through structure optimization, compositional engineering, interfacial engineering, solvent control and surface passivation, etc. This article is dedicated to providing an up-to-date review on the development of inorganic PSCs tailored by various inorganic perovskite materials with gradually changed optical properties and stability, as well as the film-making methods and interfacial engineering technologies. Their limited efficiencies in theory and recombination mechanisms are also predicted with a detailed balance model. Finally, we focused on the state-of-the-art strategies for enhancing the photovoltaic performance and identified new challenges and outlooks for future studies in this field.

Journal ArticleDOI
13 Feb 2019
TL;DR: Results show that ant-inspired PI strategies can be used to complement classical techniques with a high level of robustness and efficiency in outdoor homing navigation problems on a legged robot.
Abstract: Autonomous outdoor navigation requires reliable multisensory fusion strategies. Desert ants travel widely every day, showing unrivaled navigation performance using only a few thousand neurons. In the desert, pheromones are instantly destroyed by the extreme heat. To navigate safely in this hostile environment, desert ants assess their heading from the polarized pattern of skylight and judge the distance traveled based on both a stride-counting method and the optic flow, i.e., the rate at which the ground moves across the eye. This process is called path integration (PI). Although many methods of endowing mobile robots with outdoor localization have been developed recently, most of them are still prone to considerable drift and uncertainty. We tested several ant-inspired solutions to outdoor homing navigation problems on a legged robot using two optical sensors equipped with just 14 pixels, two of which were dedicated to an insect-inspired compass sensitive to ultraviolet light. When combined with two rotating polarized filters, this compass was equivalent to two costly arrays composed of 374 photosensors, each of which was tuned to a specific polarization angle. The other 12 pixels were dedicated to optic flow measurements. Results show that our ant-inspired methods of navigation give precise performances. The mean homing error recorded during the overall trajectory was as small as 0.67% under lighting conditions similar to those encountered by ants. These findings show that ant-inspired PI strategies can be used to complement classical techniques with a high level of robustness and efficiency.

Journal ArticleDOI
TL;DR: The implementation of the standard cleaning and disinfection procedure with the integration of the PX-UVC treatment had effective results in both the reduction of hygiene failures and in control environmental contamination by high-concern microorganisms.
Abstract: Implementation of environmental cleaning and disinfection has been shown to reduce the incidences of healthcare-associated infections. The effect of an enhanced strategy for terminal room disinfection, applying the pulsed xenon-based ultraviolet light no-touch disinfection systems (PX-UVC) after the current standard operating protocol (SOP) was evaluated. In a teaching hospital, the effectiveness in reducing the total bacterial count (TBC) and in eliminating high-concern microorganisms was assessed on five high-touch surfaces in different critical areas, immediately pre- and post-cleaning and disinfection procedures (345 sampling sites). PX-UVC showed only 18% (15/85) of positive samples after treatment compared to 63% (72/115) after SOP. The effectiveness of PX-UVC was also observed in the absence of manual cleaning and application of a chemical disinfectant. According to the hygienic standards proposed by the Italian Workers Compensation Authority, 9 of 80 (11%) surfaces in operating rooms showed TBC ≥15 CFU/24 cm2 after the SOP, while all samples were compliant applying the SOP plus PX-UVC disinfection. Clostridium difficile (CD) spores and Klebsiella pneumoniae (KPC) were isolated only after the SOP. The implementation of the standard cleaning and disinfection procedure with the integration of the PX-UVC treatment had effective results in both the reduction of hygiene failures and in control environmental contamination by high-concern microorganisms.

Journal ArticleDOI
TL;DR: Results show that the SnO2/TNTs heterojunction exhibits the superior photocatalytic performance, and the photoc atalytic degradation efficiency of NO can reach 60% under visible light with effective inhibition of NO2 production.

Journal ArticleDOI
TL;DR: Although UV and chlorine treatments were effective in the inactivation of bacterial cells, incomplete degradation of ARGs was observed, suggesting that plasmid-borne ARGs can potentially be transferred to other bacteria even after the disinfection process.

Journal ArticleDOI
TL;DR: Examination of conjugative transfer of genes encoding resistance to cephalosporin and polymyxin from two antibiotic-resistant donor strains found that VL irradiation did not affect the physiological and biochemical characteristics of the bacteria, or induce oxidative stress and gene expression, as well as the altered expression of genes relevant to conjugation and other stress responses in bacterial cells.

Journal ArticleDOI
TL;DR: The largest genomics study in MCC to date is performed to characterize the molecular landscape and demonstrate clinicogenomic associates of immunotherapy response and provide a comprehensive genomic landscape of MCC.
Abstract: Purpose: Merkel cell carcinoma (MCC) is a rare, aggressive cutaneous malignancy, which has demonstrated sensitivity to immune checkpoint inhibitor therapy. Here, we perform the largest genomics study in MCC to date to characterize the molecular landscape and evaluate for clinical and molecular correlates to immune checkpoint inhibitor response. Experimental Design: Comprehensive molecular profiling was performed on 317 tumors from patients with MCC, including the evaluation of oncogenic mutations, tumor mutational burden (TMB), mutational signatures, and the Merkel cell polyomavirus (MCPyV). For a subset of 57 patients, a retrospective analysis was conducted to evaluate for clinical and molecular correlates to immune checkpoint inhibitor response and disease survival. Results: Genomic analyses revealed a bimodal distribution in TMB, with 2 molecularly distinct subgroups. Ninety-four percent (n = 110) of TMB-high specimens exhibited an ultraviolet light (UV) mutational signature. MCPyV genomic DNA sequences were not identified in any TMB-high cases (0/117), but were in 63% (110/175) of TMB-low cases. For 36 evaluable patients treated with checkpoint inhibitors, the overall response rate was 44% and response correlated with survival at time of review (100% vs. 20%, P Conclusions: We provide a comprehensive genomic landscape of MCC and demonstrate clinicogenomic associates of immunotherapy response.

Journal ArticleDOI
TL;DR: In this paper, the authors reported sub-millimeter (wavelength 870um) detections of 39 massive star-forming galaxies at z > 3, which are unseen in the spectral region from the deepest ultraviolet to the near-infrared.
Abstract: Our current knowledge of cosmic star-formation history during the first two billion years (corresponding to redshift z >3) is mainly based on galaxies identified in rest-frame ultraviolet light. However, this population of galaxies is known to under-represent the most massive galaxies, which have rich dust content and/or old stellar populations. This raises the questions of the true abundance of massive galaxies and the star-formation-rate density in the early universe. Although several massive galaxies that are invisible in the ultraviolet have recently been confirmed at early epochs, most of them are extreme starbursts with star-formation rates exceeding 1000 solar masses per year, suggesting that they are unlikely to represent the bulk population of massive galaxies. Here we report submillimeter (wavelength 870um) detections of 39 massive star-forming galaxies at z > 3, which are unseen in the spectral region from the deepest ultraviolet to the near-infrared. With a space density of about $2 \times 10^{-5}$ per cubic megaparsec (two orders of magnitudes higher than extreme starbursts) and star-formation rates of 200 solar masses per year, these galaxies represent the bulk population of massive galaxies that have been missed from previous surveys. They contribute a total star-formation-rate density ten times larger than that of equivalently massive ultraviolet-bright galaxies at z >3. Residing in the most massive dark matter halos at their redshifts, they are probably the progenitors of the largest present-day galaxies in massive groups and clusters. Such a high abundance of massive and dusty galaxies in the early universe challenges our understanding of massive-galaxy formation.

Journal ArticleDOI
TL;DR: A facile, economical, and green method for the preparation of carbon dots (CDs) was established via microwave irradiation using green natural material kelp as the main carbon source and ethylenediamine as nitrogen dopant as mentioned in this paper.

Journal ArticleDOI
TL;DR: This biomedical platform works under clinical MH conditions and at a low iron dosage, which will enable the translation of dual MH/heat-mediated chemotherapy, thus overcoming the clinical limitation of MH: i.e., being able to monitor tumor progression post-MH-treatment by magnetic resonance imaging (MRI).
Abstract: The use of magnetic nanoparticles in oncothermia has been investigated for decades, but an effective combination of magnetic nanoparticles and localized chemotherapy under clinical magnetic hyperthermia (MH) conditions calls for novel platforms. In this study, we have engineered magnetic thermoresponsive iron oxide nanocubes (TR-cubes) to merge MH treatment with heat-mediated drug delivery, having in mind the clinical translation of the nanoplatform. We have chosen iron oxide based nanoparticles with a cubic shape because of their outstanding heat performance under MH clinical conditions, which makes them benchmark agents for MH. Accomplishing a surface-initiated polymerization of strongly interactive nanoparticles such as our iron oxide nanocubes, however, remains the main challenge to overcome. Here, we demonstrate that it is possible to accelerate the growth of a polymer shell on each nanocube by simple irradiation of a copper-mediated polymerization with a ultraviolet light (UV) light, which both speeds up the polymerization and prevents nanocube aggregation. Moreover, we demonstrate herein that these TR-cubes can carry chemotherapeutic doxorubicin (DOXO-loaded-TR-cubes) without compromising their thermoresponsiveness both in vitro and in vivo. In vivo efficacy studies showed complete tumor suppression and the highest survival rate for animals that had been treated with DOXO-loaded-TR-cubes, only when they were exposed to MH. The biodistribution of intravenously injected TR-cubes showed signs of renal clearance within 1 week and complete clearance after 5 months. This biomedical platform works under clinical MH conditions and at a low iron dosage, which will enable the translation of dual MH/heat-mediated chemotherapy, thus overcoming the clinical limitation of MH: i.e., being able to monitor tumor progression post-MH-treatment by magnetic resonance imaging (MRI).

Journal ArticleDOI
TL;DR: The results suggest that the Zr-LMOF has the potential for low-cost, rapid and in situ imaging detection of OPPs contamination via easy-to-read visual signal.
Abstract: Metal-organic frameworks (MOFs) have shown considerable prospects for sensing pesticide residues. However, the low stability of MOFs in water hinders them from testing food and environmental samples. Herein, we report an easy and cost-efficient synthesis of a water-stable zirconium luminescent MOF (Zr-LMOF) and its application for rapid, sensitive, and in situ detection of organophosphorous pesticides (OPPs). The Zr-MOF is prepared using Zr(IV) and 1,2,4,5-tetrakis(4-carboxyphenyl)benzene. The synthesized Zr-LMOF rapidly absorbs trace amounts of OPP parathion-methyl and indicates its presence. A low limit of detection of 0.115 μg kg-1 (0.438 nM) with a wide linear range from 70 μg kg-1 to 5.0 mg kg-1 was achieved. Satisfactory recoveries ranging from 78% to 107% were obtained for spiked food and environmental samples. Further, the Zr-LMOF was applied to imitate rapid and in situ imaging detection of pesticide residue on fresh produce nondestructively; visual signals appeared under ultraviolet light within 5 min. These results suggest that the Zr-LMOF has the potential for low-cost, rapid, and in situ imaging detection of OPPs contamination via easy-to-read visual signal.

Journal ArticleDOI
14 Jan 2019-ACS Nano
TL;DR: A gas therapy approach based on near-infrared (NIR) light-triggered sulfur dioxide (SO2) generation was developed, and the therapeutic mechanism as well as in vivo antitumor therapeutic efficacy was demonstrated.
Abstract: The exploitation of gas therapy platforms holds great promise as a “green” approach for selective cancer therapy, however, it is often associated with some challenges, such as uncontrolled or insufficient gas generation and unclear therapeutic mechanisms. In this work, a gas therapy approach based on near-infrared (NIR) light-triggered sulfur dioxide (SO2) generation was developed, and the therapeutic mechanism as well as in vivo antitumor therapeutic efficacy was demonstrated. A SO2 prodrug-loaded rattle-structured upconversion@silica nanoparticles (RUCSNs) was constructed to enable high loading capacity without obvious leakage and to convert NIR light into ultraviolet light so as to activate the prodrug for SO2 generation. In addition, SO2 prodrug-loaded RUCSNs showed high cell uptake, good biocompatibility, intracellular tracking ability, and high NIR light-triggered cytotoxicity. Furthermore, the cytotoxic SO2 was found to induce cell apoptosis accompanied by the increase of intracellular reactive oxy...

Journal ArticleDOI
25 Feb 2019
TL;DR: A novel onboard relative localization method, based on ultraviolet light, used for real-time control of a leader–follower formation of multirotor UAVs, is presented in this paper and was verified in demanding outdoor conditions, validating the usage of UVDAR in real flight scenario, and paving the way for further usage ofUVDAR for practical multi-UAV formation deployments.
Abstract: A novel onboard relative localization method, based on ultraviolet light, used for real-time control of a leader–follower formation of multirotor UAVs, is presented in this paper. A new smart sensor, UVDAR, is employed in an innovative way, which does not require communication and is extremely reliable in real-world conditions. This innovative sensing system exploits UV spectrum and provides relative position and yaw measurements independently of environment conditions such as changing illumination and the presence of undesirable light sources and their reflections. The proposed approach exploits this retrieved information to steer the follower to a given three-dimensional position and orientation relative to the leader, which may be considered as the main building block of any multi-UAV system operating with small mutual distances among team members. The proposed solution was verified in demanding outdoor conditions, validating the usage of UVDAR in real flight scenario, and paving the way for further usage of UVDAR for practical multi-UAV formation deployments.