scispace - formally typeset
Search or ask a question

Showing papers on "Vehicle dynamics published in 2009"


Proceedings ArticleDOI
10 Jun 2009
TL;DR: Simulation results over multiple driving cycles indicate better fuel economy over conventional strategies can be achieved and the proposed algorithm is causal and has the potential for real-time implementation.
Abstract: In this paper, a Model Predictive Control (MPC) strategy is developed for the first time to solve the optimal energy management problem of power-split hybrid electric vehicles. A power-split hybrid combines the advantages of series and parallel hybrids by utilizing two electric machines and a combustion engine. Because of its many modes of operation, modeling a power-split configuration is complex and devising a near-optimal power management strategy is quite challenging. To systematically improve the fuel economy of a power-split hybrid, we formulate the power management problem as a nonlinear optimization problem. The nonlinear powertrain model and the constraints are linearized at each sample time and a receding horizon linear MPC strategy is employed to determine the power split ratio based on the updated model. Simulation results over multiple driving cycles indicate better fuel economy over conventional strategies can be achieved. In addition the proposed algorithm is causal and has the potential for real-time implementation.

1,049 citations


Book
04 Nov 2009
TL;DR: In this paper, the authors describe the tire and rim dynamics of a quarter car, including the following: forward vehicle dynamics, tire dynamics, vehicle roll dynamics, and vehicle vibration.
Abstract: Tire and rim fundamentals.- Forward vehicle dynamics.- Tire dynamics.- Driveline dynamics.- Applied kinematics.- Applied mechanisms.- Steering dynamics.- Suspension mechanisms.- Applied dynamics.- Vehicle planar dynamics.- vehicle roll dynamics.- Applied vibrations.- Vehicle vibrations.- suspension optimization.- Quarter car.

879 citations


Journal ArticleDOI
TL;DR: In this article, a three-dimensional vehicle-track coupled dynamics model is developed in which a typical railway passenger vehicle is modelled as a 35-degree-of-freedom multi-body system.
Abstract: This paper presents a framework to investigate the dynamics of overall vehicle-track systems with emphasis on theoretical modelling, numerical simulation and experimental validation. A three-dimensional vehicle-track coupled dynamics model is developed in which a typical railway passenger vehicle is modelled as a 35-degree-of-freedom multi-body system. A traditional ballasted track is modelled as two parallel continuous beams supported by a discrete-elastic foundation of three layers with sleepers and ballasts included. The non-ballasted slab track is modelled as two parallel continuous beams supported by a series of elastic rectangle plates on a viscoelastic foundation. The vehicle subsystem and the track subsystem are coupled through a wheel-rail spatial coupling model that considers rail vibrations in vertical, lateral and torsional directions. Random track irregularities expressed by track spectra are considered as system excitations by means of a time-frequency transformation technique. A fast explicit integration method is applied to solve the large nonlinear equations of motion of the system in the time domain. A computer program named TTISIM is developed to predict the vertical and lateral dynamic responses of the vehicle-track coupled system. The theoretical model is validated by full-scale field experiments, including the speed-up test on the Beijing-Qinhuangdao line and the high-speed running test on the Qinhuangdao-Shenyang line. Differences in the dynamic responses analysed by the vehicle-track coupled dynamics and by the classical vehicle dynamics are ascertained in the case of vehicles passing through curved tracks.

620 citations


Journal ArticleDOI
TL;DR: In this article, a nonlinear robust adaptive controller for a flexible air-breathing hypersonic vehicle model is proposed, where a combination of nonlinear sequential loop closure and adaptive dynamic inversion is adopted for the design of a dynamic statefeedback controller that provides stable tracking of the velocity and altitude reference trajectories and imposes a desired set point for the angle of attack.
Abstract: This paper describes the design of a nonlinear robust adaptive controller for a flexible air-breathing hypersonic vehicle model. Because of the complexity of a first-principle model of the vehicle dynamics, a control-oriented model is adopted for design and stability analysis. This simplified model retains the dominant features of the higher-fidelity model, including the nonminimum phase behavior of the flight-path angle dynamics, the flexibility effects, and the strong coupling between the engine and flight dynamics. A combination of nonlinear sequential loop closure and adaptive dynamic inversion is adopted for the design of a dynamic state-feedback controller that provides stable tracking of the velocity and altitude reference trajectories and imposes a desired set point for the angle of attack. A complete characterization of the internal dynamics of the model is derived for a Lyapunov-based stability analysis of the closed-loop system, which includes the structural dynamics. The proposed methodology addresses the issue of stability robustness with respect to both parametric model uncertainty, which naturally arises when adopting reduced-complexity models for control design, and dynamic perturbations due to the flexible dynamics. Simulation results from the full nonlinear model show the effectiveness of the controller.

524 citations


Book
15 May 2009
TL;DR: In this article, the authors combine classical vehicle dynamics with electronic control to develop a thorough understanding of the key attribute to both a vehicle's driveability and its active safety, including tire mechanics, the steering system, vehicle roll, traction and braking.
Abstract: This is the first book to combine classical vehicle dynamics with electronic control. The equation-based presentation of the theory behind vehicle dynamics enables readers to develop a thorough understanding of the key attribute to both a vehicle's driveability and its active safety. Supported by MATLAB tools, the key areas that affect vehicle dynamics are explored including tire mechanics, the steering system, vehicle roll, traction and braking, 4WS and vehicle dynamics, vehicle dynamics by vehicle and human control, and controllabiliy. As a professional reference volume, this book is an essential addition to the resources available to anyone working in vehicle design and development. Written by a leading authority in the field (who himself has considerable practical experience), the book has a unique blend of theory and practice that will be of immense value in this applications based field.* Get a thorough understand of why vehicles respond they way they do with a complete treatment of vehicle dynamics from theory to application* Full of case studies and worked examples using MATLAB/Simulink * Covers all variables of vehicle dynamics including tire and vehicle motion, control aspects, human control and external disturbances

323 citations


Proceedings ArticleDOI
14 Apr 2009
TL;DR: In this paper, the authors describe the development of a nonlinear vehicle control system based on a decomposition into a nested structure and feedback linearization which can be implemented on an embedded microcontroller.
Abstract: Four-rotor micro aerial robots, so called quadrotor UAVs, are one of the most preferred type of unmanned aerial vehicles for near-area surveillance and exploration both in military and commercial in- and outdoor applications. The reason is the very easy construction and steering principle using four rotors in a cross configuration. However, stabilizing control and guidance of these vehicles is a difficult task because of the nonlinear dynamic behavior. In addition, the small payload and the reduced processing power of the onboard electronics are further limitations for any control system implementation. This paper describes the development of a nonlinear vehicle control system based on a decomposition into a nested structure and feedback linearization which can be implemented on an embedded microcontroller. Some first simulation results underline the performance of this new control approach for the current realization.

322 citations


Journal ArticleDOI
TL;DR: A real-time algorithm for estimation of slip angle using inexpensive sensors normally available for yaw stability control applications that compensates for the presence of road bank angle and variations in tire-road characteristics is developed.
Abstract: Real-time knowledge of the slip angle in a vehicle is useful in many active vehicle safety applications, including yaw stability control, rollover prevention, and lane departure avoidance. Sensors to measure slip angle, including two-antenna GPS systems and optical sensors, are too expensive for ordinary automotive applications. This paper develops a real-time algorithm for estimation of slip angle using inexpensive sensors normally available for yaw stability control applications. The algorithm utilizes a combination of model-based estimation and kinematics-based estimation. Compared with previously published results on slip angle estimation, this present paper compensates for the presence of road bank angle and variations in tire-road characteristics. The developed algorithm is evaluated through experimental tests on a Volvo XC90 sport utility vehicle. Detailed experimental results show that the developed system can reliably estimate slip angle for a variety of test maneuvers.

292 citations


Journal ArticleDOI
TL;DR: It is proved that with arbitrary small amounts of mistuning, the asymptotic behavior of the least stable closed loop eigenvalue can be improved to O(1/N) in the limit of a large number of vehicles.
Abstract: We consider a decentralized bidirectional control of a platoon of N identical vehicles moving in a straight line. The control objective is for each vehicle to maintain a constant velocity and inter-vehicular separation using only the local information from itself and its two nearest neighbors. Each vehicle is modeled as a double integrator. To aid the analysis, we use continuous approximation to derive a partial differential equation (PDE) approximation of the discrete platoon dynamics. The PDE model is used to explain the progressive loss of closed-loop stability with increasing number of vehicles, and to devise ways to combat this loss of stability. If every vehicle uses the same controller, we show that the least stable closed-loop eigenvalue approaches zero as O(1/N2) in the limit of a large number (N) of vehicles. We then show how to ameliorate this loss of stability by small amounts of "mistuning", i.e., changing the controller gains from their nominal values. We prove that with arbitrary small amounts of mistuning, the asymptotic behavior of the least stable closed loop eigenvalue can be improved to O(1/N). All the conclusions drawn from analysis of the PDE model are corroborated via numerical calculations of the state-space platoon model.

281 citations


Journal ArticleDOI
TL;DR: Practical experiments obtained using an autonomous ldquoMini-Bajardquo vehicle equipped with an embedded computing system confirm that the proposed MPC structure is the solution that better matches the target criteria.
Abstract: This paper presents a model predictive controller (MPC) structure for solving the path-tracking problem of terrestrial autonomous vehicles. To achieve the desired performance during high-speed driving, the controller architecture considers both the kinematic and the dynamic control in a cascade structure. Our study contains a comparative study between two kinematic linear predictive control strategies: The first strategy is based on the successive linearization concept, and the other strategy combines a local reference frame with an approaching path strategy. Our goal is to search for the strategy that best comprises the performance and hardware-cost criteria. For the dynamic controller, a decentralized predictive controller based on a linearized model of the vehicle is used. Practical experiments obtained using an autonomous ldquoMini-Bajardquo vehicle equipped with an embedded computing system are presented. These results confirm that the proposed MPC structure is the solution that better matches the target criteria.

266 citations


Journal ArticleDOI
TL;DR: Comparison with several other vehicle control system approaches shows how the system operational envelope for CRVDC is significantly expanded in terms of vehicle global trajectory and planar motion responses.
Abstract: A coordinated reconfigurable vehicle dynamics control (CRVDC) system is achieved by high-level control of generalized forces/moment, distributed to the slip and slip angle of each tire by an innovative control allocation (CA) scheme. Utilizing control of individual tire slip and slip angles helps resolve the inherent tire force nonlinear constraints that otherwise may make the system more complex and computationally expensive. This in turn enables a real-time adaptable, computationally efficient accelerated fixed-point (AFP) method to improve the CA convergence rate when actuation saturates. Evaluation of the overall system is accomplished by simulation testing with a full-vehicle CarSim model under various adverse driving conditions, including scenarios where vehicle actuator failures occur. Comparison with several other vehicle control system approaches shows how the system operational envelope for CRVDC is significantly expanded in terms of vehicle global trajectory and planar motion responses.

262 citations


Journal ArticleDOI
TL;DR: A stabilizing observer-based control algorithm for an in-wheel-motored vehicle is proposed, which generates direct yaw moment to compensate for the state deviations and has been demonstrated in simulations and in a real-time experimental setting.
Abstract: A stabilizing observer-based control algorithm for an in-wheel-motored vehicle is proposed, which generates direct yaw moment to compensate for the state deviations. The control scheme is based on a fuzzy rule-based body slip angle (beta) observer. In the design strategy of the fuzzy observer, the vehicle dynamics is represented by Takagi-Sugeno-like fuzzy models. Initially, local equivalent vehicle models are built using the linear approximations of vehicle dynamics for low and high lateral acceleration operating regimes, respectively. The optimal beta observer is then designed for each local model using Kalman filter theory. Finally, local observers are combined to form the overall control system by using fuzzy rules. These fuzzy rules represent the qualitative relationships among the variables associated with the nonlinear and uncertain nature of vehicle dynamics, such as tire force saturation and the influence of road adherence. An adaptation mechanism for the fuzzy membership functions has been incorporated to improve the accuracy and performance of the system. The effectiveness of this design approach has been demonstrated in simulations and in a real-time experimental setting.

Journal ArticleDOI
TL;DR: This technical note introduces a provably stable state-feedback design modification for combined/composite adaptive control of multi-input multi-output dynamical systems with matched uncertainties.
Abstract: This technical note introduces a provably stable state-feedback design modification for combined/composite adaptive control of multi-input multi-output dynamical systems with matched uncertainties. The proposed design methodology is applied to control longitudinal dynamics of an aerial vehicle.

Journal ArticleDOI
TL;DR: A Takagi-Sugeno model-based fuzzy control design approach for electrohydraulic active vehicle suspensions considering nonlinear dynamics of the actuator, sprung mass variation, and constraints on the control input is presented.
Abstract: This paper presents a Takagi-Sugeno (T-S) model-based fuzzy control design approach for electrohydraulic active vehicle suspensions considering nonlinear dynamics of the actuator, sprung mass variation, and constraints on the control input. The T-S fuzzy model is first applied to represent the nonlinear uncertain electrohydraulic suspension. Then, a fuzzy state feedback controller is designed for the obtained T-S fuzzy model with optimized H infin performance for ride comfort by using the parallel-distributed compensation (PDC) scheme. The sufficient conditions for the existence of such a controller are derived in terms of linear matrix inequalities (LMIs). Numerical simulations on a full-car suspension model are performed to validate the effectiveness of the proposed approach. The obtained results show that the designed controller can achieve good suspension performance despite the existence of nonlinear actuator dynamics, sprung mass variation, and control input constraints.

Journal ArticleDOI
TL;DR: A nonlinear model predictive control (NMPC) is used to design a high-level controller for a fixed-wing unmanned aerial vehicle (UAV) and the control objective is extended to track adjoined multiple line segments.
Abstract: In this paper, a nonlinear model predictive control (NMPC) is used to design a high-level controller for a fixed-wing unmanned aerial vehicle (UAV). Given the kinematic model of the UAV dynamics, which is used as a model of the UAV with low-level autopilot avionics, the control objective of the NMPC is determined to track a desired line. After the error dynamics are derived, the problem of tracking a desired line is transformed into a problem of regulating the error from the desired line. A stability analysis follows to provide the conditions that can assure the closed-loop stability of the designed high-level NMPC. Furthermore, the control objective is extended to track adjoined multiple line segments. The simulation results demonstrate that the UAV controlled by the NMPC converged rapidly with a small overshoot. The performance of the NMPC was also verified through realistic ?hardware in the loop simulation.?

Proceedings ArticleDOI
12 May 2009
TL;DR: An overview of techniques and approaches used for a load transportation system based on small size unmanned helicopters with focus on the control approach and on the movement of the rope connecting helicopters and load is presented.
Abstract: In this paper we present an overview of techniques and approaches used for a load transportation system based on small size unmanned helicopters. The focus is on the control approach and on the movement of the rope connecting helicopters and load. The proposed approach is based on two control loops: an outer loop to control the translation of each helicopter in compound and an inner loop to control the orientation of helicopters. The challenge here is that in both loops the dynamics of the whole system - all helicopters and load - should be accounted for. It is shown, that for designing the outer loop controller a complex model of the helicopters and load can be replaced by a simplified model based on interconnected mass points. For designing the inner loop controller, the complete dynamics of the whole system are considered. The usage of force sensors in the ropes is proposed in order to simplify the inner loop controller and to make it robust against variations of system parameters. The presented inner loop controller is independent of the number of coupled helicopters. The outer loop controller depends on the number of helicopters. The problem of oscillations in the flexible ropes due to external disturbancies (e.g. wind gusts) is discussed and a solution based on load state observer is presented. The performance of the presented system was verified in simulations and in real flight experiments with one and three helicopters transporting the load. The worldwide first demonstration of a slung load transportation using three helicopters was performed in December 2007.

Journal ArticleDOI
TL;DR: This paper takes advantage of the features of driving motors to estimate the maximum transmissible torque output in real time based on a purely kinematic relationship and proposes an innovative controller that follows the estimated value directly and constrains the torque reference for slip prevention.
Abstract: Controlling an immeasurable state with an indirect control input is a difficult problem faced in traction control of vehicles. Research on motion control of electric vehicles (EVs) has progressed considerably, but traction control has not been so sophisticated and practical because of this difficulty. Therefore, this paper takes advantage of the features of driving motors to estimate the maximum transmissible torque output in real time based on a purely kinematic relationship. An innovative controller that follows the estimated value directly and constrains the torque reference for slip prevention is then proposed. By analysis and comparison with prior control methods, the resulting control design approach is shown to be more effective and more practical, both in simulation and on an experimental EV.

Journal ArticleDOI
TL;DR: In this paper, a review of recent research on the cross-wind effects on road and rail vehicles is presented, including a detailed methodology for using this information to predict accident risk, including details of the vehicle dynamics system models that can be used.
Abstract: This paper presents a review of recent research that has been carried out on the cross-wind effects on road and rail vehicles. After a brief introduction to the issues involved, the risk analysis framework is set out. All risk analysis methods require some knowledge of cross-wind aerodynamic force and moment coefficients, and methods of obtaining these through full scale and wind tunnel testing and through Computational Fluid Dynamics methods are then described. The picture of the flow fields around vehicles that is suggested by these measurements and calculations is then presented, and the steady and the unsteady aerodynamic force characteristics described. The detailed methodology for using this information to predict accident risk is then set out, including details of the vehicle dynamics system models that can be used. Finally potential alleviation methods are described and suggestions made for further works.

Journal ArticleDOI
TL;DR: In this article, a steering assistance system is designed and experimentally tested on a prototype passenger vehicle to avoid lane departures when the driver has a lapse of attention, based on a concept linking Lyapunov theory with linear matrix inequalities optimization.

Journal ArticleDOI
TL;DR: This paper addresses the problem of combining automatic lane-keeping and driver's steering for either obstacle avoidance or lane-change maneuvers for passing purposes or any other desired maneuvers, through a closed-loop control strategy.
Abstract: In this paper, we address the problem of combining automatic lane-keeping and driver's steering for either obstacle avoidance or lane-change maneuvers for passing purposes or any other desired maneuvers, through a closed-loop control strategy. The automatic lane-keeping control loop is never opened, and no on/off switching strategy is used. During the driver's maneuver, the vehicle lateral dynamics are controlled by the driver himself through the vehicle steering system. When there is no driver's steering action, the vehicle center of gravity tracks the center of the traveling lane thanks to the automatic lane-keeping system. At the beginning (end) of the maneuver, the lane-keeping task is released (resumed) safely and smoothly. The performance of the proposed closed-loop structure is shown both by means of simulations and through experimental results obtained along Italian highways.

Journal ArticleDOI
TL;DR: In this article, the authors developed a vehicle sidelip observer that takes the nonlinearities of the system into account, both in the theoretical analysis and the design, to make the observer suitable for implementation in the embedded hardware, and a reduction in the number of tuning parameters compared to the EKF.
Abstract: The objective of this article is to develop a vehicle sideslip observer that takes the nonlinearities of the system into account, both in the theoretical analysis and the design. The design goals include reduction of the computational complexity compared to the EKF, to make the observer suitable for implementation in the embedded hardware, and a reduction in the number of tuning parameters compared to the EKF. Design is based on a standard sensor configuration, and is subjected to the extensive testing in the realist conditions.

Journal ArticleDOI
TL;DR: In this paper, an autonomous ground vehicle (AGV2V) trajectory tracking control system is described for safe and high-speed operations enabled by incorporating Vehicle Dynamics Control (VDC), which consists of an AGV desired yaw rate generator based on a kinematic model, and a YAW rate controller based on the vehicle/tyre dynamic models.
Abstract: This paper describes a new Autonomous Ground Vehicles (AGVs) trajectory tracking control system towards safe and high-speed operations enabled by incorporating Vehicle Dynamics Control (VDC). The system consists of an AGV desired yaw rate generator based on a kinematic model, and a yaw rate controller based on the vehicle/tyre dynamic models. Sliding Mode Control (SMC) is used to handle the system uncertainties. The performance of the control system was evaluated by using a high-fidelity (experimentally validated) full-vehicle Sport Utility Vehicle (SUV) model provided by CarSim®. Compared with the results of position-error-based AGV control, significant performance improvement was observed.

Journal ArticleDOI
TL;DR: In this paper, an algebraic relationship between the vehicle sidelip angle and the road bank angle is proposed to identify the uncertain vehicle parameters using the sensor measurements such as the steering angle, the lateral acceleration and the yaw rate.

Journal ArticleDOI
TL;DR: In this paper, a detailed multibody model of the catenary and the pantograph is presented for the identification of the dynamic behaviour of the pantographs and of the interaction phenomena in the catenaries of high-speed trains due to the action of aerodynamics forces.
Abstract: Most of the high-speed trains in operation today have the electrical power supply delivered through the pantograph-catenary system. The understanding of the dynamics of this system is fundamental since it contributes to decrease the number of incidents related to these components, to reduce the maintenance and to improve interoperability. From the mechanical point of view, the most important feature of the pantograph-catenary system consists in the quality of the contact between the contact wire of the catenary and the contact strips of the pantograph. The catenary is represented by a finite element model, whereas the pantograph is described by a detailed multibody model, analysed through two independent codes in a co-simulation environment. A computational procedure ensuring the efficient communication between the multibody and finite element codes, through shared computer memory, and suitable contact force models were developed. The models presented here are contributions for the identification of the dynamic behaviour of the pantograph and of the interaction phenomena in the pantograph-catenary system of high-speed trains due to the action of aerodynamics forces. The wind forces are applied on the catenary by distributing them on the finite element mesh. Since the multibody formulation does not include explicitly the geometric information of the bodies, the wind field forces are applied to each body of the pantograph as time-dependent nonlinear external forces. These wind forces can be characterised either by using computational fluid dynamics or experimental testing in a wind tunnel. The proposed methodologies are demonstrated by the application to real operation scenarios for high-speed trains, with the purpose of defining service limitations based on train and wind speed combination.

Journal ArticleDOI
TL;DR: The validation of simulation results is increasingly important, and this paper discusses recent trends in this area, and takes a brief look forward to future simulation issues.
Abstract: Rail vehicle dynamic simulation has progressed a long way from its origins as a research tool. Modern multibody software packages are used as an essential part of the design process for new vehicle ...

Journal ArticleDOI
TL;DR: In this paper, a 17-degree-of-freedom (DOF) model of a full-scale railway vehicle integrated with the semi-active controlled magnetorheological (MR) fluid dampers in its secondary suspension system is proposed to cope with the lateral, yaw, and roll motions of the car body, trucks, and wheelsets.
Abstract: In this paper, it is aimed to investigate semi-active suspension systems using magnetorheological (MR) fluid dampers for improving the ride quality of railway vehicles. A 17-degree-of-freedom (DOF) model of a full-scale railway vehicle integrated with the semi-active controlled MR fluid dampers in its secondary suspension system is proposed to cope with the lateral, yaw, and roll motions of the car body, trucks, and wheelsets. The governing equations combining the dynamics of the railway vehicle integrated with MR dampers in the suspension system and the dynamics of the rail track irregularities are developed and a linear quadratic Gaussian (LQG) control law using the acceleration feedback is adopted, in which the state variables are estimated from the measurable accelerations with a Kalman estimator. In order to evaluate the performances of the semi-active suspension systems based on MR dampers for railway vehicles, the random and periodical track irregularities are modelled with a uniform state-space formulation according to the testing data and incorporated into the governing equation of the railway vehicle integrated with the semi-active suspension system. Utilising the governing equations and the semi-active controller developed in this paper, the simulation and analysis are presented in Part II of this paper.

Proceedings ArticleDOI
10 Jun 2009
TL;DR: This paper discusses the areas that are important to realizing a hypersonic modelling approach that can take any given vehicle geometry and permit a thorough analysis of its stability and control characteristics and any practical constraints on its operability, the design of a control law, an assessment of it closed-loop performance.
Abstract: In order to appropriately design control laws for hypersonic vehicles, it is paramount to understand how the flight dynamics are impacted by the interactions between the aerothermodynamics, propulsion system, structural dynamics, and control system. To this end, there has been a significant investment into the modelling of these sub-systems and their integration into a comprehensive model that can be used to the characterize the flight dynamics of scramjet-powered hypersonic aircraft and still remain amenable to control law design and analysis. In this paper, the development of a comprehensive model of the longitudinal dynamics of generic hypersonic vehicle with an outward-turning, two-dimensional inlet is described. The sub-system models, for the most part, are simple models derived from first-principles and are intended to capture the interactions between the different sub-systems to provide a representative vehicle model. We also will discuss the areas that are important to realizing a hypersonic modelling approach that can take any given vehicle geometry and permit a thorough analysis of its stability and control characteristics and any practical constraints on its operability, the design of a control law, an assessment of it closed-loop performance.

Journal ArticleDOI
01 Dec 2009
TL;DR: In this paper, an obstacle avoidance scheme for autonomous vehicles as an active safety procedure in unknown environments is presented using the non-linear model predictive framework, in which the simplified dynamics of the vehicle are used to predict the state of vehicle over the look-ahead horizon.
Abstract: This paper presents an obstacle avoidance scheme for autonomous vehicles as an active safety procedure in unknown environments. Safe trajectories are generated using the non-linear model predictive framework, in which the simplified dynamics of the vehicle are used to predict the state of the vehicle over the look-ahead horizon. To compensate for the slight dissimilarity between the simplified model and the actual vehicle, a separate controller is designed to track the generated trajectory. The longitudinal dynamics of the vehicle are controlled using the inverse dynamics of the vehicle powertrain model, and the lateral dynamics are controlled using a linear quadratic regulator. In the non-linear model predictive framework, to obtain safe trajectories, local obstacle information is incorporated into the performance index using a parallax-based method. Simulation results on a full non-linear vehicle model show that the proposed combination of model-predictive-control-based trajectory generation and...

Proceedings ArticleDOI
10 Jun 2009
TL;DR: An elaborate comparative analysis of the proposed Adaptive Robust Controller for Hypersonic Vehicles (ARCH) is carried out using a control verification methodology, which enables the quantification of the improvements that result from using and adaptive controller for a typical maneuver in the V - h space under cruise conditions.
Abstract: This paper proposes an adaptive controller for a hypersonic cruise vehicle subject to aerodynamic uncertainties, center-of-gravity movements, actuator saturation, failures, and time-delays. The adaptive control architecture is based on a linearized model of the underlying rigid body dynamics and explicitly accommodates for all uncertainties. It also includes a baseline proportional integral filter commonly used in optimal control designs. The control design is validated using a high-fidelity HSV model that incorporates various effects including coupling between structural modes and aerodynamics, and thrust pitch coupling. An elaborate comparative analysis of the proposed Adaptive Robust Controller for Hypersonic Vehicles (ARCH) is carried out using a control verification methodology. In particular, we study the resilience of the controller to the uncertainties mentioned above for a set of closed-loop requirements that prevent excessive structural loading, poor tracking performance and engine stalls. This analysis enables the quantification of the improvements that result from using and adaptive controller for a typical maneuver in the V - h space under cruise conditions.

Journal ArticleDOI
TL;DR: The stability and error convergence of the integrated control system in the presence of the uncertain parameters, which is a very essential feature for the active safety means, is guaranteed by utilizing a Lyapunov function.
Abstract: This paper presents an adaptive nonlinear control scheme aimed at the improvement of the handling properties of vehicles. The control inputs for steering intervention are the steering angle and wheel torque for each wheel, i.e., two control inputs for each wheel. The control laws are obtained from a nonlinear 7-degree-of-freedom (DOF) vehicle model. A main loop and eight cascade loops are the basic components of the integrated control system. In the main loop, tire friction forces are manipulated with the aim of canceling the nonlinearities in a way that the error dynamics of the feedback linearized system has sufficient degrees of exponential stability; meanwhile, the saturation limits of tires and the bandwidth of the actuators in the inner loops are taken into account. A modified inverse tire model is constructed to transform the desired tire friction forces to the desired wheel slip and sideslip angle. In the next step, these desired values, which are considered as setpoints, are tackled through the use of the inner loops with guaranteed tracking performance. The vehicle mass and mass moment of inertia, as unknown parameters, are estimated through parameter adaptation laws. The stability and error convergence of the integrated control system in the presence of the uncertain parameters, which is a very essential feature for the active safety means, is guaranteed by utilizing a Lyapunov function. Computer simulations, using a nonlinear 14-DOF vehicle model, are provided to demonstrate the desired tracking performance of the proposed control approach.

Journal ArticleDOI
TL;DR: In this paper, a real-time estimation of the wheel slip value corresponding to the peak of the tire-road friction curve is proposed to provide anti-lock braking systems with reliable information on its value upon activation.
Abstract: Tire-road friction characteristics are deeply interlaced with all vehicle dynamics control systems, as road conditions strongly affect the control schemes behaviour. This work aims at the real-time estimation of the wheel slip value corresponding to the peak of the tire-road friction curve, in order to provide anti-lock braking systems (ABS) with reliable information on its value upon activation. Different techniques based on recursive least squares and the maximum likelihood approach are used for friction curve fitting and their merits and drawbacks thoroughly examined. In addition, since one of the main issues in slip-based friction estimation during braking is vehicle speed estimation, an effective algorithm for addressing this task is developed. The proposed peak slip value estimation strategy is analysed and tested both in simulation and on data collected on an instrumented test vehicle. In the latter case, the vehicle speed estimation algorithm is used, and the estimated vehicle speed provided as input for friction estimation. Practical applicability constraints posed by typical ABS systems are also considered.