scispace - formally typeset
G

G. Mazzolo

Researcher at Max Planck Society

Publications -  42
Citations -  14814

G. Mazzolo is an academic researcher from Max Planck Society. The author has contributed to research in topics: Gravitational wave & LIGO. The author has an hindex of 26, co-authored 41 publications receiving 12684 citations. Previous affiliations of G. Mazzolo include Leibniz University of Hanover.

Papers
More filters
Journal ArticleDOI

Observation of Gravitational Waves from a Binary Black Hole Merger

B. P. Abbott, +1011 more
TL;DR: This is the first direct detection of gravitational waves and the first observation of a binary black hole merger, and these observations demonstrate the existence of binary stellar-mass black hole systems.
Journal ArticleDOI

A gravitational wave observatory operating beyond the quantum shot-noise limit

J. Abadie, +614 more
- 11 Sep 2011 - 
TL;DR: In this paper, the authors demonstrate the squeezed-light enhancement of GEO600, which will be the GW observatory operated by the LIGO Scientific Collaboration in its search for GWs for the next 3-4 years.
Journal ArticleDOI

Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light

J. Aasi, +748 more
- 01 Aug 2013 - 
TL;DR: In this article, the authors inject squeezed states to improve the performance of one of the detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) beyond the quantum noise limit, most notably in the frequency region down to 150 Hz.
Journal ArticleDOI

Astrophysical implications of the binary black hole merger gw150914

B. P. Abbott, +964 more
TL;DR: The discovery of the GW150914 with the Advanced LIGO detectors provides the first observational evidence for the existence of binary black-hole systems that inspiral and merge within the age of the Universe as mentioned in this paper.
Journal ArticleDOI

GW150914: The Advanced LIGO Detectors in the Era of First Discoveries

B. P. Abbott, +958 more
TL;DR: Following a major upgrade, the two advanced detectors of the Laser Interferometer Gravitational-wave Observatory (LIGO) held their first observation run between September 2015 and January 2016, and observed a transient gravitational-wave signal determined to be the coalescence of two black holes.