scispace - formally typeset
J

Jens Birch

Researcher at Linköping University

Publications -  358
Citations -  27619

Jens Birch is an academic researcher from Linköping University. The author has contributed to research in topics: Thin film & Sputter deposition. The author has an hindex of 67, co-authored 340 publications receiving 24028 citations. Previous affiliations of Jens Birch include California Institute of Technology & European Synchrotron Radiation Facility.

Papers
More filters
Journal ArticleDOI

GW151226: observation of gravitational waves from a 22-solar-mass binary black hole coalescence

B. P. Abbott, +973 more
TL;DR: This second gravitational-wave observation provides improved constraints on stellar populations and on deviations from general relativity.
Journal ArticleDOI

Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A

B. P. Abbott, +1198 more
TL;DR: In this paper, the authors used the observed time delay of $(+1.74\pm 0.05)\,{\rm{s}}$ between GRB 170817A and GW170817 to constrain the difference between the speed of gravity and speed of light to be between $-3
Journal ArticleDOI

Tests of general relativity with GW150914

B. P. Abbott, +979 more
TL;DR: It is found that the final remnant's mass and spin, as determined from the low-frequency and high-frequency phases of the signal, are mutually consistent with the binary black-hole solution in general relativity.
Journal ArticleDOI

GW170608: Observation of a 19 solar-mass binary black hole coalescence

B. P. Abbott, +1154 more
TL;DR: In this article, a GW signal from the merger of two stellar-mass black holes was observed by the two Advanced Laser Interferometer Gravitational-Wave Observatory detectors with a network signal-to-noise ratio of 13.5%.
Journal ArticleDOI

A gravitational-wave standard siren measurement of the Hubble constant

B. P. Abbott, +1322 more
- 02 Nov 2017 - 
TL;DR: A measurement of the Hubble constant is reported that combines the distance to the source inferred purely from the gravitational-wave signal with the recession velocity inferred from measurements of the redshift using the electromagnetic data.