scispace - formally typeset
Y

Y. Setyawati

Researcher at Max Planck Society

Publications -  68
Citations -  25853

Y. Setyawati is an academic researcher from Max Planck Society. The author has contributed to research in topics: LIGO & Gravitational wave. The author has an hindex of 34, co-authored 51 publications receiving 20493 citations. Previous affiliations of Y. Setyawati include Albert Einstein Institution & Leibniz University of Hanover.

Papers
More filters
Journal ArticleDOI

Observation of Gravitational Waves from a Binary Black Hole Merger

B. P. Abbott, +1011 more
TL;DR: This is the first direct detection of gravitational waves and the first observation of a binary black hole merger, and these observations demonstrate the existence of binary stellar-mass black hole systems.
Journal ArticleDOI

GW151226: observation of gravitational waves from a 22-solar-mass binary black hole coalescence

B. P. Abbott, +973 more
TL;DR: This second gravitational-wave observation provides improved constraints on stellar populations and on deviations from general relativity.
Journal ArticleDOI

GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs

B. P. Abbott, +1148 more
- 04 Sep 2019 - 
TL;DR: In this paper, the authors presented the results from three gravitational-wave searches for coalescing compact binaries with component masses above 1 Ma during the first and second observing runs of the advanced GW detector network.
Journal ArticleDOI

Tests of general relativity with GW150914

B. P. Abbott, +979 more
TL;DR: It is found that the final remnant's mass and spin, as determined from the low-frequency and high-frequency phases of the signal, are mutually consistent with the binary black-hole solution in general relativity.
Journal ArticleDOI

Properties of the Binary Black Hole Merger GW150914

B. P. Abbott, +987 more
TL;DR: The data around the time of the event were analyzed coherently across the LIGO network using a suite of accurate waveform models that describe gravitational waves from a compact binary system in general relativity.