scispace - formally typeset
G

Gianluca Gemme

Researcher at Istituto Nazionale di Fisica Nucleare

Publications -  77
Citations -  15940

Gianluca Gemme is an academic researcher from Istituto Nazionale di Fisica Nucleare. The author has contributed to research in topics: Gravitational wave & LIGO. The author has an hindex of 21, co-authored 77 publications receiving 13356 citations.

Papers
More filters
Journal ArticleDOI

Observation of Gravitational Waves from a Binary Black Hole Merger

B. P. Abbott, +1011 more
TL;DR: This is the first direct detection of gravitational waves and the first observation of a binary black hole merger, and these observations demonstrate the existence of binary stellar-mass black hole systems.
Journal ArticleDOI

GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2

B. P. Abbott, +1065 more
TL;DR: The magnitude of modifications to the gravitational-wave dispersion relation is constrain, the graviton mass is bound to m_{g}≤7.7×10^{-23} eV/c^{2} and null tests of general relativity are performed, finding that GW170104 is consistent with general relativity.
Journal ArticleDOI

Astrophysical implications of the binary black hole merger gw150914

B. P. Abbott, +964 more
TL;DR: The discovery of the GW150914 with the Advanced LIGO detectors provides the first observational evidence for the existence of binary black-hole systems that inspiral and merge within the age of the Universe as mentioned in this paper.
Journal ArticleDOI

Sensitivity studies for third-generation gravitational wave observatories

Stefan Hild, +141 more
TL;DR: In this article, a special focus is set on evaluating the frequency band below 10 Hz where a complex mixture of seismic, gravity gradient, suspension thermal and radiation pressure noise dominates, including the most relevant fundamental noise contributions.
Journal ArticleDOI

GW150914: The Advanced LIGO Detectors in the Era of First Discoveries

B. P. Abbott, +958 more
TL;DR: Following a major upgrade, the two advanced detectors of the Laser Interferometer Gravitational-wave Observatory (LIGO) held their first observation run between September 2015 and January 2016, and observed a transient gravitational-wave signal determined to be the coalescence of two black holes.