scispace - formally typeset
R

Robert A. DiStasio

Researcher at Cornell University

Publications -  99
Citations -  20279

Robert A. DiStasio is an academic researcher from Cornell University. The author has contributed to research in topics: Density functional theory & van der Waals force. The author has an hindex of 37, co-authored 91 publications receiving 15391 citations. Previous affiliations of Robert A. DiStasio include Princeton University & Ithaca College.

Papers
More filters
Journal ArticleDOI

Advanced capabilities for materials modelling with Quantum ESPRESSO.

Paolo Giannozzi, +53 more
TL;DR: Recent extensions and improvements are described, covering new methodologies and property calculators, improved parallelization, code modularization, and extended interoperability both within the distribution and with external software.
Journal ArticleDOI

Advanced capabilities for materials modelling with Quantum ESPRESSO

Paolo Giannozzi, +53 more
TL;DR: Quantum ESPRESSO as discussed by the authors is an integrated suite of open-source computer codes for quantum simulations of materials using state-of-the-art electronic-structure techniques, based on density functional theory, density functional perturbation theory, and many-body perturbations theory, within the plane-wave pseudo-potential and projector-augmented-wave approaches.
Journal ArticleDOI

Advances in methods and algorithms in a modern quantum chemistry program package

TL;DR: Specific developments discussed include fast methods for density functional theory calculations, linear scaling evaluation of energies, NMR chemical shifts and electric properties, fast auxiliary basis function methods for correlated energies and gradients, equation-of-motion coupled cluster methods for ground and excited states, geminal wavefunctions, embedding methods and techniques for exploring potential energy surfaces.
Journal ArticleDOI

Advances in molecular quantum chemistry contained in the Q-Chem 4 program package

Yihan Shao, +156 more
- 17 Jan 2015 - 
TL;DR: A summary of the technical advances that are incorporated in the fourth major release of the Q-Chem quantum chemistry program is provided in this paper, covering approximately the last seven years, including developments in density functional theory and algorithms, nuclear magnetic resonance (NMR) property evaluation, coupled cluster and perturbation theories, methods for electronically excited and open-shell species, tools for treating extended environments, algorithms for walking on potential surfaces, analysis tools, energy and electron transfer modelling, parallel computing capabilities, and graphical user interfaces.
Journal ArticleDOI

Accurate and Efficient Method for Many-Body van der Waals Interactions

TL;DR: It is shown that the screening and the many-body vdW energy play a significant role even for rather small molecules, becoming crucial for an accurate treatment of conformational energies for biomolecules and binding of molecular crystals.