scispace - formally typeset
Search or ask a question

Showing papers by "Steven P. Gygi published in 2013"


Journal ArticleDOI
18 Apr 2013-Nature
TL;DR: Structural and topological analysis revealed extensive conservation of PARKIN-dependent ubiquitylation sites on cytoplasmic domains in vertebrate and Drosophila melanogaster MOM proteins, providing a resource for understanding how the PINK1–PARKIN pathway re-sculpts the proteome to support mitochondrial homeostasis.
Abstract: The PARKIN ubiquitin ligase (also known as PARK2) and its regulatory kinase PINK1 (also known as PARK6), often mutated in familial early-onset Parkinson's disease, have central roles in mitochondrial homeostasis and mitophagy. Whereas PARKIN is recruited to the mitochondrial outer membrane (MOM) upon depolarization via PINK1 action and can ubiquitylate porin, mitofusin and Miro proteins on the MOM, the full repertoire of PARKIN substrates--the PARKIN-dependent ubiquitylome--remains poorly defined. Here we use quantitative diGly capture proteomics (diGly) to elucidate the ubiquitylation site specificity and topology of PARKIN-dependent target modification in response to mitochondrial depolarization. Hundreds of dynamically regulated ubiquitylation sites in dozens of proteins were identified, with strong enrichment for MOM proteins, indicating that PARKIN dramatically alters the ubiquitylation status of the mitochondrial proteome. Using complementary interaction proteomics, we found depolarization-dependent PARKIN association with numerous MOM targets, autophagy receptors, and the proteasome. Mutation of the PARKIN active site residue C431, which has been found mutated in Parkinson's disease patients, largely disrupts these associations. Structural and topological analysis revealed extensive conservation of PARKIN-dependent ubiquitylation sites on cytoplasmic domains in vertebrate and Drosophila melanogaster MOM proteins. These studies provide a resource for understanding how the PINK1-PARKIN pathway re-sculpts the proteome to support mitochondrial homeostasis.

839 citations


Journal ArticleDOI
TL;DR: An overview of key information that should be taken into consideration before beginning phosphorylation-site analysis, as well as a step-by-step guide for carrying out successful experiments are provided.
Abstract: A mechanistic understanding of signaling networks requires identification and analysis of phosphorylation sites. Mass spectrometry offers a rapid and highly sensitive approach to mapping phosphorylation sites. However, mass spectrometry has significant limitations that must be considered when planning to carry out phosphorylation-site mapping. Here we provide an overview of key information that should be taken into consideration before beginning phosphorylation-site analysis, as well as a step-by-step guide for carrying out successful experiments.

236 citations


Journal ArticleDOI
TL;DR: It is shown that mammalian cells contain soluble factors that selectively bind to K63 chains and inhibit or prevent their association with proteasomes and the Rad23 proteins, especially hHR23B, were found to bind specifically to K48‐ubiquitinated proteins and to stimulate proteasome binding.
Abstract: Although cellular proteins conjugated to K48-linked Ub chains are targeted to proteasomes, proteins conjugated to K63-ubiquitin chains are directed to lysosomes. However, pure 26S proteasomes bind and degrade K48- and K63-ubiquitinated substrates similarly. Therefore, we investigated why K63-ubiquitinated proteins are not degraded by proteasomes. We show that mammalian cells contain soluble factors that selectively bind to K63 chains and inhibit or prevent their association with proteasomes. Using ubiquitinated proteins as affinity ligands, we found that the main cellular proteins that associate selectively with K63 chains and block their binding to proteasomes are ESCRT0 (Endosomal Sorting Complex Required for Transport) and its components, STAM and Hrs. In vivo, knockdown of ESCRT0 confirmed that it is required to block binding of K63-ubiquitinated molecules to the proteasome. In addition, the Rad23 proteins, especially hHR23B, were found to bind specifically to K48-ubiquitinated proteins and to stimulate proteasome binding. The specificities of these proteins for K48- or K63-ubiquitin chains determine whether a ubiquitinated protein is targeted for proteasomal degradation or delivered instead to the endosomal-lysosomal pathway.

230 citations


Journal ArticleDOI
TL;DR: Results reveal a Sin1-phosphorylation-dependent mTORC2 regulation, providing a potential molecular mechanism by which mutations in the m TORC1–S6K–Sin1 signalling axis might cause aberrant hyper-activation of the mtorC2–Akt pathway, which facilitates tumorigenesis.
Abstract: Wei and colleagues report that phosphorylation of Sin1 by S6K or Akt results in its dissociation from mTORC2, thus suppressing mTORC2 activity. A cancer-patient-derived Sin1 mutation that impairs this phosphorylation leads to mTORC2 hyperactivation and increased tumour formation in mice.

229 citations


Journal ArticleDOI
TL;DR: It is suggested that therapeutic approaches that simultaneously stimulate mitochondrogenesis and reduce muscle proteolysis and inflammation have potential for treating sarcopenia.
Abstract: Molecular mechanisms underlying sarcopenia, the age-related loss of skeletal muscle mass and function, remain unclear. To identify molecular changes that correlated best with sarcopenia and might contribute to its pathogenesis, we determined global gene expression profiles in muscles of rats aged 6, 12, 18, 21, 24, and 27 months. These rats exhibit sarcopenia beginning at 21 months. Correlation of the gene expression versus muscle mass or age changes, and functional annotation analysis identified gene signatures of sarcopenia distinct from gene signatures of aging. Specifically, mitochondrial energy metabolism (e.g., tricarboxylic acid cycle and oxidative phosphorylation) pathway genes were the most downregulated and most significantly correlated with sarcopenia. Also, perturbed were genes/pathways associated with neuromuscular junction patency (providing molecular evidence of sarcopenia-related functional denervation and neuromuscular junction remodeling), protein degradation, and inflammation. Proteomic analysis of samples at 6, 18, and 27 months confirmed the depletion of mitochondrial energy metabolism proteins and neuromuscular junction proteins. Together, these findings suggest that therapeutic approaches that simultaneously stimulate mitochondrogenesis and reduce muscle proteolysis and inflammation have potential for treating sarcopenia.

229 citations


Journal ArticleDOI
TL;DR: It is reported that cool temperature can directly activate a thermogenic gene program in adipocytes in a cell-autonomous manner, independent of the canonical cAMP/Protein Kinase A/cAMP response element-binding protein pathway downstream of the β-adrenergic receptors.
Abstract: Classic brown fat and inducible beige fat both dissipate chemical energy in the form of heat through the actions of mitochondrial uncoupling protein 1. This nonshivering thermogenesis is crucial for mammals as a defense against cold and obesity/diabetes. Cold is known to act indirectly through the sympathetic nervous systems and β-adrenergic signaling, but here we report that cool temperature (27–33 °C) can directly activate a thermogenic gene program in adipocytes in a cell-autonomous manner. White and beige fat cells respond to cool temperatures, but classic brown fat cells do not. Importantly, this activation in isolated cells is independent of the canonical cAMP/Protein Kinase A/cAMP response element-binding protein pathway downstream of the β-adrenergic receptors. These findings provide an unusual insight into the role of adipose tissues in thermoregulation, as well as an alternative way to target nonshivering thermogenesis for treatment of obesity and metabolic diseases.

221 citations


Journal ArticleDOI
TL;DR: The constitutive and regulated expression of the Plasmodium proteome is defined, offering an insight into the dynamics of phosphorylation during asexual cycle progression, a major step toward defining kinase-substrate pairs operative in various signaling networks in the parasite.
Abstract: During asexual intraerythrocytic development, Plasmodium falciparum diverges from the paradigm of the eukaryotic cell cycles by undergoing multiple rounds of DNA replication and nuclear division without cytokinesis. A better understanding of the molecular switches that coordinate a myriad of events for the progression of the parasite through the intraerythrocytic developmental stages will be of fundamental importance for rational design of intervention strategies. To achieve this goal, we performed isobaric tag-based quantitative proteomics and phosphoproteomics analyses of three developmental stages in the Plasmodium asexual cycle and identified 2767 proteins, 1337 phosphoproteins, and 6293 phosphorylation sites. Approximately 34% of identified proteins and 75% of phosphorylation sites exhibit changes in abundance as the intraerythrocytic cycle progresses. Our study identified 43 distinct phosphorylation motifs and a range of potential MAPK/CDK substrates. Further analysis of phosphorylated kinases identified 30 protein kinases with 126 phosphorylation sites within the kinase domain or in N- or C-terminal tails. Many of these phosphorylations are likely CK2-mediated. We define the constitutive and regulated expression of the Plasmodium proteome during the intraerythrocytic developmental cycle, offering an insight into the dynamics of phosphorylation during asexual cycle progression. Our system-wide comprehensive analysis is a major step toward defining kinase-substrate pairs operative in various signaling networks in the parasite.

164 citations


Journal ArticleDOI
08 Nov 2013-Science
TL;DR: A proteomics approach for protein-protein interactions reveals new components of a conserved cell signaling pathway, and selects for further characterization a new member of the alpha-arrestin family, Leash, and shows that it promotes degradation of Yki through the lysosomal pathway.
Abstract: The Hippo pathway controls metazoan organ growth by regulating cell proliferation and apoptosis. Many components have been identified, but our knowledge of the composition and structure of this pathway is still incomplete. Using existing pathway components as baits, we generated by mass spectrometry a high-confidence Drosophila Hippo protein-protein interaction network (Hippo-PPIN) consisting of 153 proteins and 204 interactions. Depletion of 67% of the proteins by RNA interference regulated the transcriptional coactivator Yorkie (Yki) either positively or negatively. We selected for further characterization a new member of the alpha-arrestin family, Leash, and show that it promotes degradation of Yki through the lysosomal pathway. Given the importance of the Hippo pathway in tumor development, the Hippo-PPIN will contribute to our understanding of this network in both normal growth and cancer.

152 citations


Journal ArticleDOI
12 Apr 2013-Science
TL;DR: The UL138-mediated loss of MRP1 provides a marker for detecting latent HCMV infection and a therapeutic target for eliminating latently infected cells before transplantation.
Abstract: The reactivation of latent human cytomegalovirus (HCMV) infection after transplantation is associated with high morbidity and mortality. In vivo, myeloid cells and their progenitors are an important site of HCMV latency, whose establishment and/or maintenance require expression of the viral transcript UL138. Using stable isotope labeling by amino acids in cell culture-based mass spectrometry, we found a dramatic UL138-mediated loss of cell surface multidrug resistance-associated protein-1 (MRP1) and the reduction of substrate export by this transporter. Latency-associated loss of MRP1 and accumulation of the cytotoxic drug vincristine, an MRP1 substrate, depleted virus from naturally latent CD14(+) and CD34(+) progenitors, all of which are in vivo sites of latency. The UL138-mediated loss of MRP1 provides a marker for detecting latent HCMV infection and a therapeutic target for eliminating latently infected cells before transplantation.

131 citations


Journal ArticleDOI
TL;DR: Mass spectrometry-based targeted proteomics is used to show that activated epidermal growth factor receptor (EGFR) is ubiquitinated by one to two short polyubiquitin chains mainly linked via lysine 63 (K63) or conjugated with a single monoubiquit in.
Abstract: Ubiquitination mediates endocytosis and endosomal sorting of various signaling receptors, transporters, and channels. However, the relative importance of mono- versus polyubiquitination and the role of specific types of polyubiquitin linkages in endocytic trafficking remain controversial. We used mass spectrometry-based targeted proteomics to show that activated epidermal growth factor receptor (EGFR) is ubiquitinated by one to two short (two to three ubiquitins) polyubiquitin chains mainly linked via lysine 63 (K63) or conjugated with a single monoubiquitin. Multimonoubiquitinated EGFR species were not found. To directly test whether K63 polyubiquitination is necessary for endocytosis and post-endocytic sorting of EGFR, a chimeric protein, in which the K63 linkage-specific deubiquitination enzyme AMSH [associated molecule with the Src homology 3 domain of signal transducing adaptor molecule (STAM)] was fused to the carboxyl terminus of EGFR, was generated. MS analysis of EGFR-AMSH ubiquitination demonstrated that the fraction of K63 linkages was substantially reduced, whereas relative amounts of monoubiquitin and K48 linkages increased, compared with that of wild-type EGFR. EGFR-AMSH was efficiently internalized into early endosomes, but, importantly, the rates of ligand-induced sorting to late endosomes and degradation of EGFR-AMSH were dramatically decreased. The slow degradation of EGFR-AMSH resulted in the sustained signaling activity of this chimeric receptor. Ubiquitination patterns, rate of endosomal sorting, and signaling kinetics of EGFR fused with the catalytically inactive mutant of AMSH were reversed to normal. Altogether, the data are consistent with the model whereby short K63-linked polyubiquitin chains but not multimonoubiquitin provide an increased avidity for EGFR interactions with ubiquitin adaptors, thus allowing rapid sorting of activated EGFR to the lysosomal degradation pathway.

116 citations


Journal ArticleDOI
TL;DR: The E3 ubiquitin ligase RNF168 recruits LSD1 to DNA damage sites, where it reduces histone methylation upstream of 53BP1 recruitment during the DNA damage response.
Abstract: Histone demethylation is known to regulate transcription, but its role in other processes is largely unknown. We report a role for the histone demethylase LSD1/KDM1A in the DNA damage response (DDR). We show that LSD1 is recruited directly to sites of DNA damage. H3K4 dimethylation, a major substrate for LSD1, is reduced at sites of DNA damage in an LSD1-dependent manner. The E3 ubiquitin ligase RNF168 physically interacts with LSD1 and we find this interaction to be important for LSD1 recruitment to DNA damage sites. Although loss of LSD1 did not affect the initial formation of pH2A.X foci, 53BP1 and BRCA1 complex recruitment were reduced upon LSD1 knockdown. Mechanistically, this was likely a result of compromised histone ubiquitylation preferentially in late S/G2. Consistent with a role in the DDR, knockdown of LSD1 resulted in moderate hypersensitivity to γ-irradiation and increased homologous recombination. Our findings uncover a direct role for LSD1 in the DDR and place LSD1 downstream of RNF168 in the DDR pathway.

Journal ArticleDOI
TL;DR: The 54-plex approach resulted in a significant reduction in purification resources (time, reagents, etc.) and a ~50-fold improvement in acquisition throughput and was demonstrated in several ways including measuring inhibition of PKA activity in MCF7 cell lysates for a panel of nine compounds.
Abstract: Targeted proteomics assays such as those measuring end points in activity assays are sensitive and specific but often lack in throughput. In an effort to significantly increase throughput, a comparison was made between the traditional approach which utilizes an internal standard and the multiplexing approach which relies on isobaric tagging. A kinase activity assay was used for proof of concept, and experiments included three biological replicates for every condition. Results from the two approaches were highly similar with the multiplexing showing greater throughput. Two novel 6-plex isobaric tags were added for a total of three 6-plex experiments (18-plex) in a single run. Next, three mass variants of the target peptide were labeled with the three isobaric tags giving nine 6-plex reactions for 54-plex quantitation in a single run. Since the multiplexing approach allows all samples to be combined prior to purification and acquisition, the 54-plex approach resulted in a significant reduction in purificati...

Journal ArticleDOI
15 Jun 2013-Methods
TL;DR: An improved reductive dimethylation protocol is presented and the application of this method is demonstrated in the analysis of the fasted vs. re-fed mouse liver phosphoproteome.

Journal ArticleDOI
TL;DR: Mass spectrometry is used to identify 35 “phospho-occupied” serine/threonine residues within PER, 24 of which are specifically regulated by PP1/PP2A, demonstrating that cooperativity between phosphorylation sites maintains PER function, and support a model in which specific phosphorylated regions regulate others to control circadian period.
Abstract: Circadian rhythms in Drosophila rely on cyclic regulation of the period (per) and timeless (tim) clock genes. The molecular cycle requires rhythmic phosphorylation of PER and TIM proteins, which is mediated by several kinases and phosphatases such as Protein Phosphatase-2A (PP2A) and Protein Phosphatase-1 (PP1). Here, we used mass spectrometry to identify 35 “phospho-occupied” serine/threonine residues within PER, 24 of which are specifically regulated by PP1/PP2A. We found that cell culture assays were not good predictors of protein function in flies and so we generated per transgenes carrying phosphorylation site mutations and tested for rescue of the per01 arrhythmic phenotype. Surprisingly, most transgenes restore wild type rhythms despite carrying mutations in several phosphorylation sites. One particular transgene, in which T610 and S613 are mutated to alanine, restores daily rhythmicity, but dramatically lengthens the period to ∼30 hrs. Interestingly, the single S613A mutation extends the period by 2–3 hours, while the single T610A mutation has a minimal effect, suggesting these phospho-residues cooperate to control period length. Conservation of S613 from flies to humans suggests that it possesses a critical clock function, and mutational analysis of residues surrounding T610/S613 implicates the entire region in determining circadian period. Biochemical and immunohistochemical data indicate defects in overall phosphorylation and altered timely degradation of PER carrying the double or single S613A mutation(s). The PER-T610A/S613A mutant also alters CLK phosphorylation and CLK-mediated output. Lastly, we show that a mutation at a previously identified site, S596, is largely epistatic to S613A, suggesting that S613 negatively regulates phosphorylation at S596. Together these data establish functional significance for a new domain of PER, demonstrate that cooperativity between phosphorylation sites maintains PER function, and support a model in which specific phosphorylated regions regulate others to control circadian period.

Journal ArticleDOI
TL;DR: An important role of SIRT1-mediated deacetylation in regulating the formation of DUBm subcomplexes within the larger SAGA complex is indicated, and this interaction is highly specific, requires the ZnF-UBP domain of USP22, and is disrupted by the inactivating H363Y mutation within SIRT
Abstract: Although many functions and targets have been attributed to the histone and protein deacetylase SIRT1, a comprehensive analysis of SIRT1 binding proteins yielding a high-confidence interaction map has not been established. Using a comparative statistical analysis of binding partners, we have assembled a high-confidence SIRT1 interactome. Employing this method, we identified the deubiquitinating enzyme ubiquitin-specific protease 22 (USP22), a component of the deubiquitinating module (DUBm) of the SAGA transcriptional coactivating complex, as a SIRT1-interacting partner. We found that this interaction is highly specific, requires the ZnF-UBP domain of USP22, and is disrupted by the inactivating H363Y mutation within SIRT1. Moreover, we show that USP22 is acetylated on multiple lysine residues and that alteration of a single lysine (K129) within the ZnF-UBP domain is sufficient to alter interaction of the DUBm with the core SAGA complex. Furthermore, USP22-mediated recruitment of SIRT1 activity promotes the deacetylation of individual SAGA complex components. Our results indicate an important role of SIRT1-mediated deacetylation in regulating the formation of DUBm subcomplexes within the larger SAGA complex.

Journal ArticleDOI
TL;DR: Deficiency of the microtubule-associated protein DCAMKL1 results in elevated bone mass via repression of osteoblast activation through Runx2 antagonization.
Abstract: Osteoblasts are responsible for the formation and mineralization of the skeleton. To identify novel regulators of osteoblast differentiation, we conducted an unbiased forward genetic screen using a lentiviral-based shRNA library. This functional genomics analysis led to the identification of the microtubule-associated protein DCAMKL1 (Doublecortin-like and CAM kinase–like 1) as a novel regulator of osteogenesis. Mice with a targeted disruption of Dcamkl1 displayed elevated bone mass secondary to increased bone formation by osteoblasts. Molecular experiments demonstrated that DCAMKL1 represses osteoblast activation by antagonizing Runx2, the master transcription factor in osteoblasts. Key elements of the cleidocranial dysplasia phenotype observed in Runx2 +/ mice are reversed by the introduction of a Dcamkl1-null allele. Our results establish a genetic linkage between these two proteins in vivo and demonstrate that DCAMKL1 is a physiologically relevant regulator of anabolic bone formation.

Journal ArticleDOI
TL;DR: SHN3 is identified as a dampener of ERK activity that functions in part downstream of WNT signaling in osteoblasts that holds promise as a therapy for osteoporosis.
Abstract: Mice deficient in Schnurri-3 (SHN3; also known as HIVEP3) display increased bone formation, but harnessing this observation for therapeutic benefit requires an improved understanding of how SHN3 functions in osteoblasts. Here we identified SHN3 as a dampener of ERK activity that functions in part downstream of WNT signaling in osteoblasts. A D-domain motif within SHN3 mediated the interaction with and inhibition of ERK activity and osteoblast differentiation, and knockin of a mutation in Shn3 that abolishes this interaction resulted in aberrant ERK activation and consequent osteoblast hyperactivity in vivo. Additionally, in vivo genetic interaction studies demonstrated that crossing to Lrp5–/– mice partially rescued the osteosclerotic phenotype of Shn3–/– mice; mechanistically, this corresponded to the ability of SHN3 to inhibit ERK-mediated suppression of GSK3β. Inducible knockdown of Shn3 in adult mice resulted in a high–bone mass phenotype, providing evidence that transient blockade of these pathways in adults holds promise as a therapy for osteoporosis.

Journal ArticleDOI
TL;DR: In this article, the authors demonstrate that the actin cytoskeleton polarization of yeast inhibits the highly conserved Target of Rapamycin Complex 1 (TORC1) pathway, and that this mechanism serves to coordinate the ability of cells to increase in size with their biosynthetic capacity.

Journal ArticleDOI
TL;DR: The improved kinome profiling methods described here represent an effective means to perform systematic analysis of kinases involved in cell signaling and oncogenic transformation and for analyzing the effect of different inhibitory drugs.
Abstract: Protein kinases play critical roles in many biological and pathological processes, making them important targets for therapeutic drugs. Here, we desired to increase the throughput for kinome-wide profiling. A new workflow coupling ActivX ATP probe (AAP) affinity reagents with isotopic labeling to quantify the relative levels and modification states of kinases in cell lysates is described. We compared the new workflow to a classical proteomics approach in which fractionation was used to identify low-abundance kinases. We find that AAPs enriched approximately 90 kinases in a single analysis involving six cell lines or states in a single run, an 8-fold improvement in throughput relative to the classical approach. In general, AAPs cross-linked to both the active and inactive states of kinases but performing phosphopeptide enrichment made it possible to measure the phospho sites of regulatory residues lying in the kinase activation loops, providing information on activation state. When we compared the kinome a...

Journal ArticleDOI
TL;DR: Key roles for FSTL3 are identified in limiting testis organ size and promoting age-related testicular regression and a cross-talk between TGFβ ligand and AKT signaling and leads to a potential mechanism for increased cellular survival and antiaging.
Abstract: Follistatin-like 3 (FSTL3) is a glycoprotein that binds and inhibits the action of TGFβ ligands such as activin. The roles played by FSTL3 and activin signaling in organ development and homeostasis are not fully understood. The authors show mice deficient in FSTL3 develop markedly enlarged testes that are also delayed in their age-related regression. These FSTL3 knockout mice exhibit increased Sertoli cell numbers, allowing for increased spermatogenesis but otherwise showing normal testicular function. The data show that FSTL3 deletion leads to increased AKT signaling and SIRT1 expression in the testis. This demonstrates a cross-talk between TGFβ ligand and AKT signaling and leads to a potential mechanism for increased cellular survival and antiaging. The findings identify crucial roles for FSTL3 in limiting testis organ size and promoting age-related testicular regression.

Journal ArticleDOI
TL;DR: It is demonstrated that activation of the Ras/mitogen-activated protein kinase (MAPK) pathway promotes Gab2 phosphorylation on basic consensus motifs, and it is suggested that RSK is part of a negative-feedback loop that restricts Gab2-dependent epithelial cell motility.
Abstract: The scaffolding adapter protein Gab2 (Grb2-associated binder) participates in the signaling response evoked by various growth factors and cytokines. Gab2 is overexpressed in several human malignancies, including breast cancer, and was shown to promote mammary epithelial cell migration. The role of Gab2 in the activation of different signaling pathways is well documented, but less is known regarding the feedback mechanisms responsible for its inactivation. We now demonstrate that activation of the Ras/mitogen-activated protein kinase (MAPK) pathway promotes Gab2 phosphorylation on basic consensus motifs. More specifically, we show that RSK (p90 ribosomal S6 kinase) phosphorylates Gab2 on three conserved residues, both in vivo and in vitro. Mutation of these phosphorylation sites does not alter Gab2 binding to Grb2, but instead, we show that Gab2 phosphorylation inhibits the recruitment of the tyrosine phosphatase Shp2 in response to growth factors. Expression of an unphosphorylatable Gab2 mutant in mammary epithelial cells promotes an invasion-like phenotype and increases cell motility. Taken together, these results suggest that RSK is part of a negative-feedback loop that restricts Gab2-dependent epithelial cell motility. On the basis of the widespread role of Gab2 in receptor signaling, these findings also suggest that RSK plays a regulatory function in diverse receptor systems.

Journal ArticleDOI
TL;DR: Reconstituted budding yeast heterochromatin disrupts transcriptional coactivator recruitment and RNA polymerase elongation, suggesting a conserved principle of heterochromaatin in assembling a specific structure that targets multiple steps to achieve repression.

Journal ArticleDOI
TL;DR: The pancreatic isoform of human glucokinase is SUMOylated in vitro, using recombinant enzymes, and in insulin-secreting model cells, showing a novel form of modification, regulating its cellular stability and activity.

Journal ArticleDOI
TL;DR: A highly conserved middle region of VMS1 is necessary and sufficient for mitochondrial targeting (MTD) and under conditions in which selected mitochondria are damaged, Vms1 is selectively recruited to damaged mitochondria.
Abstract: Mitochondrial dysfunction is associated with the development of many age-related human diseases. Therefore recognizing and correcting the early signs of malfunctioning mitochondria is of critical importance for cellular welfare and survival. We previously demonstrated that VCP/Cdc48-associated mitochondrial stress responsive 1 (Vms1) is a component of a mitochondrial surveillance system that mediates the stress-responsive degradation of mitochondrial proteins by the proteasome. Here we propose novel mechanisms through which Vms1 monitors the status of mitochondria and is recruited to damaged or stressed mitochondria. We find that Vms1 contains a highly conserved region that is necessary and sufficient for mitochondrial targeting (the mitochondrial targeting domain [MTD]). Of interest, MTD-mediated mitochondrial targeting of Vms1 is negatively regulated by a direct interaction with the Vms1 N-terminus. Using laser-induced generation of mitochondrial reactive oxygen species, we also show that Vms1 is preferentially recruited to mitochondria subjected to oxidative stress. These studies define cellular and biochemical mechanisms by which Vms1 locali­zation to mitochondria is controlled to enable an efficient protein quality control system.

Journal ArticleDOI
TL;DR: The data reveal widespread errors in inserting Sec into proteins and in dysregulation of selenoprotein expression and function upon antibiotic treatment, which is specific to mammalian cells in culture.

Journal ArticleDOI
TL;DR: This study imposed chilling temperatures on roots of rice plants while maintaining shoots at optimum atmospheric temperature to study the effect of root chilling on the global protein expression in shoots and found evidence of a possible induction of a sugar signalling pathway.
Abstract: Low root temperature causes a decrease in water uptake, which leads to mineral and nutrient deficiencies with potentially decreased root and shoot growth. Differential temperature effects in plants have been studied extensively, however, the effect of root chilling on the global protein expression in shoots has not been explored. In this study, we imposed chilling temperatures on roots of rice plants while maintaining shoots at optimum atmospheric temperature. Shoot materials (growing zones and leaves) were harvested at five points over a time course of four days, including a two-day recovery period. Proteins were quantified by tandem mass tags and triple stage MS, using a method developed to overcome ratio compression in isobaric-labelled quantitation. Over 3000 proteins in each of the tissues were quantified by multiple peptides. Proteins significantly differentially expressed as compared with the control included abscisic acid-responsive and drought-associated proteins. The data also contained evidence of a possible induction of a sugar signalling pathway.

Journal ArticleDOI
02 Apr 2013-PLOS ONE
TL;DR: This murine model of human CEL-MODY diabetes did not detect mutation-specific endocrine or exocrine pancreatic phenotypes, in response to altered diets or exposure to cerulein, and there were no detectable mutation- specific differences in serum amylase, islet hormones or the extent of pancreatic tissue inflammation.
Abstract: Background CEL-MODY is a monogenic form of diabetes with exocrine pancreatic insufficiency caused by mutations in CARBOXYL-ESTER LIPASE (CEL). The pathogenic processes underlying CEL-MODY are poorly understood, and the global knockout mouse model of the CEL gene (CELKO) did not recapitulate the disease. We therefore aimed to create and phenotype a mouse model specifically over-expressing mutated CEL in the pancreas. Methods We established a monotransgenic floxed (flanking LOX sequences) mouse line carrying the human CEL mutation c.1686delT and crossed it with an elastase-Cre mouse to derive a bitransgenic mouse line with pancreas-specific over-expression of CEL carrying this disease-associated mutation (TgCEL). Following confirmation of murine pancreatic expression of the human transgene by real-time quantitative PCR, we phenotyped the mouse model fed a normal chow and compared it with mice fed a 60% high fat diet (HFD) as well as the effects of short-term and long-term cerulein exposure. Results Pancreatic exocrine function was normal in TgCEL mice on normal chow as assessed by serum lipid and lipid-soluble vitamin levels, fecal elastase and fecal fat absorption, and the normoglycemic mice exhibited normal pancreatic morphology. On 60% HFD, the mice gained weight to the same extent as controls, had normal pancreatic exocrine function and comparable glucose tolerance even after resuming normal diet and follow up up to 22 months of age. The cerulein-exposed TgCEL mice gained weight and remained glucose tolerant, and there were no detectable mutation-specific differences in serum amylase, islet hormones or the extent of pancreatic tissue inflammation. Conclusions In this murine model of human CEL-MODY diabetes, we did not detect mutation-specific endocrine or exocrine pancreatic phenotypes, in response to altered diets or exposure to cerulein.

Patent
22 Oct 2013
TL;DR: In this paper, the relative abundance of the labeled molecules in each of the samples may be determined from the measured relative abundances of the heavier ions, which may comprise the original molecule from the sample, may be measured.
Abstract: Embodiments are directed to a method, a computer readable medium encoded with instructions that, when executed, perform a method, and a system for performing mass spectrometry analysis. Molecules of different samples may be labeled with a chemical tag, allowing a multiplexed analysis of multiple samples. The labeled molecules may be fragmented, each fragmented molecule creating at least two separate ions. The relative abundance of each of the heavier ions, which may comprise the original molecule from the sample, may be measured. A relative abundance of the labeled molecules in each of the samples may be determined from the measured relative abundances of the heavier ions.

Journal ArticleDOI
15 Jun 2013-Methods
TL;DR: This work demonstrates this approach by determining potential kinase-substrate pairs for six peptides, selected from the literature, that were shown to be upregulated during mitosis and evaluated the use of stable isotope labeling to improve quantification.

Patent
23 May 2013
TL;DR: In this article, a method of performing a mass spectrometry analysis includes labeling each of a plurality of samples with a corresponding chemical tag; forming a first plurality of ions from molecules in the samples; selecting a subset of the first plurality, the subset being selected by isolating ions of the plurality of ion in a range of mass-to-charge (M2C) ranges; and fragmenting ions in the subset.
Abstract: A method of performing a mass spectrometry analysis includes labeling each of a plurality of samples with a corresponding chemical tag; forming a first plurality of ions from molecules in the samples; selecting a subset of the first plurality of ions, the subset being selected by isolating ions of the first plurality of ions in a plurality of ranges of mass-to-charge; forming a second plurality of ions by fragmenting ions in the subset; and measuring information indicative of a quantity of each of the plurality of chemical tags present in each of the plurality of samples.