scispace - formally typeset
S

Steven Ritz

Researcher at University of California, Santa Cruz

Publications -  52
Citations -  8821

Steven Ritz is an academic researcher from University of California, Santa Cruz. The author has contributed to research in topics: Fermi Gamma-ray Space Telescope & Dark matter. The author has an hindex of 36, co-authored 52 publications receiving 8331 citations.

Papers
More filters
Journal ArticleDOI

The spectral energy distribution of fermi bright blazars

A. A. Abdo, +273 more
Abstract: We have conducted a detailed investigation of the broadband spectral properties of the gamma-ray selected blazars of the Fermi LAT Bright AGN Sample (LBAS). By combining our accurately estimated Fermi gamma-ray spectra with Swift, radio, infra-red, optical, and other hard X-ray/gamma-ray data, collected within 3 months of the LBAS data taking period, we were able to assemble high-quality and quasi-simultaneous spectral energy distributions (SED) for 48 LBAS blazars. The SED of these gamma-ray sources is similar to that of blazars discovered at other wavelengths, clearly showing, in the usual log nu-log nu F-nu representation, the typical broadband spectral signatures normally attributed to a combination of low-energy synchrotron radiation followed by inverse Compton emission of one or more components. We have used these SED to characterize the peak intensity of both the low-and the high-energy components. The results have been used to derive empirical relationships that estimate the position of the two peaks from the broadband colors (i.e., the radio to optical, alpha(ro), and optical to X-ray, alpha(ox), spectral slopes) and from the gamma-ray spectral index. Our data show that the synchrotron peak frequency (nu(S)(peak)) is positioned between 10(12.5) and 10(14.5) Hz in broad-lined flat spectrum radio quasars (FSRQs) and between 10(13) and 10(17) Hz in featureless BL Lacertae objects. We find that the gamma-ray spectral slope is strongly correlated with the synchrotron peak energy and with the X-ray spectral index, as expected at first order in synchrotron-inverse Compton scenarios. However, simple homogeneous, one-zone, synchrotron self-Compton (SSC) models cannot explain most of our SED, especially in the case of FSRQs and low energy peaked (LBL) BL Lacs. More complex models involving external Compton radiation or multiple SSC components are required to reproduce the overall SED and the observed spectral variability. While more than 50% of known radio bright high energy peaked (HBL) BL Lacs are detected in the LBAS sample, only less than 13% of known bright FSRQs and LBL BL Lacs are included. This suggests that the latter sources, as a class, may be much fainter gamma-ray emitters than LBAS blazars, and could in fact radiate close to the expectations of simple SSC models. We categorized all our sources according to a new physical classification scheme based on the generally accepted paradigm for Active Galactic Nuclei and on the results of this SED study. Since the LAT detector is more sensitive to flat spectrum gamma-ray sources, the correlation between nu(S)(peak) and gamma-ray spectral index strongly favors the detection of high energy peaked blazars, thus explaining the Fermi overabundance of this type of sources compared to radio and EGRET samples. This selection effect is similar to that experienced in the soft X-ray band where HBL BL Lacs are the dominant type of blazars.
Journal ArticleDOI

The spectrum of isotropic diffuse gamma-ray emission between 100 MeV and 820 GeV

Markus Ackermann, +143 more
TL;DR: The IGRB spectrum shows a significant high-energy cutoff feature, and can be well described over nearly four decades in energy by a power law with exponential cutoff having a spectral index of $2.32\pm0.02$ and a break energy of $(279\pm52)$ GeV using our baseline diffuse Galactic emission model as mentioned in this paper.
Journal ArticleDOI

Measurement of Separate Cosmic-Ray Electron and Positron Spectra with the Fermi Large Area Telescope

Markus Ackermann, +158 more
TL;DR: The Fermi Large Area Telescope measured separate cosmic-ray electron and positron spectra to distinguish the two species by exploiting Earth's shadow, and it is confirmed that the fraction rises with energy in the 20-100 GeV range.
Journal ArticleDOI

Constraining Dark Matter Models from a Combined Analysis of Milky Way Satellites with the Fermi Large Area Telescope

Markus Ackermann, +156 more
TL;DR: This work presents a search for dark matter consisting of weakly interacting massive particles, applying a joint likelihood analysis to 10 satellite galaxies with 24 months of data of the Fermi Large Area Telescope, and is able to rule out models with the most generic cross section, using gamma rays.
Journal ArticleDOI

A limit on the variation of the speed of light arising from quantum gravity effects

A. A. Abdo, +236 more
- 19 Nov 2009 - 
TL;DR: The detection of emission up to ∼31 GeV from the distant and short GRB, and no evidence for the violation of Lorentz invariance is found, which disfavour quantum-gravity theories in which the quantum nature of space–time on a very small scale linearly alters the speed of light.