scispace - formally typeset
Search or ask a question
Institution

Cooperative Research Centre

About: Cooperative Research Centre is a based out in . It is known for research contribution in the topics: Population & Sea ice. The organization has 7633 authors who have published 8607 publications receiving 429721 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors analyse the Argo network of profiling floats and historical oceanographic data to detect coherent hemispheric-scale warming and freshening trends that extend to depths of more than 1,000 m.
Abstract: Observations show a significant intensification of the Southern Hemisphere westerlies, the prevailing winds between the latitudes of 30° and 60° S, over the past decades. A continuation of this intensification trend is projected by climate scenarios for the twenty-first century. The response of the Antarctic Circumpolar Current and the carbon sink in the Southern Ocean to changes in wind stress and surface buoyancy fluxes is under debate. Here we analyse the Argo network of profiling floats and historical oceanographic data to detect coherent hemispheric-scale warming and freshening trends that extend to depths of more than 1,000 m. The warming and freshening is partly related to changes in the properties of the water masses that make up the Antarctic Circumpolar Current, which are consistent with the anthropogenic changes in heat and freshwater fluxes suggested by climate models. However, we detect no increase in the tilt of the surfaces of equal density across the Antarctic Circumpolar Current, in contrast to coarse-resolution model studies. Our results imply that the transport in the Antarctic Circumpolar Current and meridional overturning in the Southern Ocean are insensitive to decadal changes in wind stress.

453 citations

Journal ArticleDOI
TL;DR: In this paper, the anti-fouling performance of virgin and modified membranes were examined in a direct contact membrane distillation (DCMD) process using sodium chloride and humic acid solution as a model feed.

440 citations

Journal ArticleDOI
TL;DR: In this article, the effects of forest fragmentation on beetle species composition were investigated in an experimentally fragmented tropical forest landscape in Central Amazonia, where leaf-litter beetles were sampled at seven distances from the forest edge (0-420 m) along forest edge-to-interior transects in two 100-ha forest fragments and two continuous forest edges.
Abstract: The effects of forest fragmentation on beetle species composition were investigated in an experimentally fragmented tropical forest landscape in Central Amazonia. Leaf-litter beetles were sampled at seven distances from the forest edge (0–420 m) along forest edge-to-interior transects in two 100-ha forest fragments and two continuous forest edges, and at an identical series of distances along two deep continuous forest transects. Additional samples were taken at the centers of two 10-ha forest fragments and two 1-ha fragments. This sampling regime allowed discrimination between edge and fragment area effects. Beetle species composition changed significantly and independently with both decreasing distance from forest edge and decreasing fragment area. Edge effects on species composition were mediated by six important environmental variables: air temperature, canopy height, percent ground cover of twigs, litter biomass, litter moisture content, and an air temperature × distance from edge interaction effect, due to the different temperature profiles of edges with differing edge vegetation density. Population densities of 15 of the 32 most abundant beetle species tested (47%) were significantly affected by forest fragmentation. Species responses were classified empirically into four major categories: (A) edge sensitive, area insensitive; (B) area sensitive, edge insensitive; (C) edge and area sensitive; and (D) edge and area insensitive. Within these categories, trends in density were either positive (deep-forest species), or negative (disturbed-area species), with species showing the full spectrum of responses to fragmentation. The vast majority of species were adversely affected. Estimated species loss rates from forest fragments were: 49.8% of common species from 1-ha fragments, 29.8% from 10-ha fragments, and 13.8% from 100-ha fragments. Declining density was a significant precursor of species loss from forest fragments, but other species that did not show significant population density responses to fragmentation were also absent from some fragments, presumably by chance. The probability of species loss from forest fragments was not correlated with body size or trophic group for the 32 common species, although for the entire beetle assemblage (993 species) proportions of species in different trophic groups changed significantly with fragmentation. Rarity and population variability (in undisturbed forest) were significant predictors of susceptibility to fragmentation. Surprisingly, though, common species were significantly more likely to become locally extinct in small fragments than rarer species. This lends empirical support to models of multispecies coexistence under disturbance that suggest competitively dominant but poorly dispersing species are the first to become extinct due to habitat destruction. Thus, rarer species are predicted to be better dispersers and better at persisting.

433 citations

Book ChapterDOI
TL;DR: In this paper, a low flow recruitment hypothesis was proposed to explain why some species spawn during the warmest months and lowest flows and how they are able to recruit under these conditions.
Abstract: Knowledge of the biology of native fishes of the Murray-Darling Basin is based largely on studies conducted under hatchery conditions and on a limited number of recreationally important species. From observations that increases in water level in aquaculture ponds initiate spawning in some species, and from limited studies of wild fishes and studies in overseas floodplain river systems, a perception has emerged of the importance of flooding and the flood plain in the life cycles of Murray-Darling fishes in general. However, there is little confirmatory evidence of the use of temporary floodplain habitats by larvae, juveniles or adults. The significance of in-channel habitats, especially for rearing, has received little attention. Murray-Darling fish species can be placed into three life history modes, based mainly on spawning style and time and developmental intervals of larvae at first feeding. Fish in each group may be able to take advantage of floods if the timing is right and prey are plentiful, however, the larvae of some species are able to recruit under non-flood conditions within the main river channel. This forms the basis of the ‘low flow recruitment hypothesis’, which attempts to explain why some species spawn during the warmest months and lowest flows and how they are able to recruit under these conditions. This hypothesis is then placed in the context of the current state of knowledge of the relationships between flow and the biology of Murray-Darling fishes, specifically cues for spawning, movement and recruitment. The lack of widespread evidence for floodplain use by any life history interval of fish may be due to a paucity of study, however, there are some fundamental factors, such as the predictability of timing and duration of high flow events as well as the lack of coincidence of high flows and high temperatures in some regions of the Basin, which may be important in determining the use of floodplain habitats by fish.

431 citations

Journal ArticleDOI
TL;DR: This work examined how OIE ratios derived from stream invertebrate data varied among 234 unimpaired reference sites and 254 test sites potentially impaired by past logging.
Abstract: The ratio of the number of observed taxa to that expected to occur in the absence of human-caused stress (OIE) is an intuitive and ecologically meaningful measure of biological integrity. We examined how OIE ratios derived from stream invertebrate data varied among 234 unimpaired reference sites and 254 test sites potentially impaired by past logging. Data were collected from streams in three montane ecoregions in California. Two sets of River Invertebrate Prediction and Classification System (RIVPACS) predictive mod- els were built: one set of models was based on near-species taxonomic resolution; the other was based on family identifications. Two models were built for each level of taxonomic resolution: one calculated 0 and E based on all taxa with probabilities of capture (Pj) > 0; the other calculated 0 and E based on only those taxa with Pc ? 0.5. Evaluations of the performance of each model were based on three criteria: (1) how well models predicted the taxa found at unimpaired sites, (2) the degree to which OIE values differed among unimpaired reference sites and potentially impaired test sites, and (3) the degree to which test site OIE values were correlated with independent measures of watershed alteration. Predictions of species models were more accurate than those of family models, and pre- dictions of the PC ? 0.5 species model were more robust than predictions of the PC > 0 model. OIE values derived from both species models were related to land use variables, but only assessments based on the Pc > 0.5 model were insensitive to naturally occurring differences among streams, ecoregions, and years.

427 citations


Authors

Showing all 7633 results

NameH-indexPapersCitations
Eric N. Olson206814144586
Nicholas G. Martin1921770161952
Grant W. Montgomery157926108118
Paul Mitchell146137895659
James Whelan12878689180
Shaobin Wang12687252463
Graham D. Farquhar12436875181
Jie Jin Wang12071954587
Christos Pantelis12072356374
John J. McGrath120791124804
David B. Lindenmayer11995459129
Ashley I. Bush11656057009
Yong-Guan Zhu11568446973
Ary A. Hoffmann11390755354
David A. Hume11357359932
Network Information
Related Institutions (5)
University of Queensland
155.7K papers, 5.7M citations

92% related

University of Melbourne
174.8K papers, 6.3M citations

90% related

University of Sydney
187.3K papers, 6.1M citations

89% related

University of New South Wales
153.6K papers, 4.8M citations

89% related

Australian National University
109.2K papers, 4.3M citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202211
2021243
2020284
2019300
2018327
2017419