scispace - formally typeset
Search or ask a question
Institution

Cooperative Research Centre

About: Cooperative Research Centre is a based out in . It is known for research contribution in the topics: Population & Sea ice. The organization has 7633 authors who have published 8607 publications receiving 429721 citations.


Papers
More filters
Journal ArticleDOI
15 Nov 2011
TL;DR: Kinetics studies showed that the degradation of MO fitted well to the pseudo first-order model, including the following: oxidation of iron, adsorption of MO to B-nZVI, formation of Fe(II)-dye complex, and cleavage of azo bond.
Abstract: Zero-valent iron (ZVI) nanoparticles tend to agglomerate, resulting in a significant loss in reactivity. To address this issue, synthesized bentonite-supported nanoscale zero-valent iron (B-nZVI) was used to remove azo dye methyl orange (MO) in aqueous solution. Batch experiments show that various parameters, such as pH, initial concentration of MO, dosage, and temperature, were affected by the removal of MO. Scanning electron microscopy (SEM) confirmed that B-nZVI increased their reactivity and a decrease occurred in the aggregation of iron nanoparticles for the presence of bentonite (B). Using B-nZVI, 79.46% of MO was removed, whereas only 40.03% when using nZVI after reacting for 10 min with an initial MO concentration of 100 mg/L (pH = 6.5). Furthermore, after B-nZVI reacted to MO, XRD indicated that iron oxides were formed. FTIR showed that no new bands appeared, and UV–vis demonstrated that the absorption peak of MO was degraded. Kinetics studies showed that the degradation of MO fitted well to the pseudo first-order model. A degradation mechanism is proposed, including the following: oxidation of iron, adsorption of MO to B-nZVI, formation of Fe(II)–dye complex, and cleavage of azo bond. Finally, the removal rate of MO from actual wastewater was 99.75% when utilizing B-nZVI.

340 citations

Journal ArticleDOI
08 Jan 2016-Science
TL;DR: Satellite imaging isolated hazard potential for earthquake-triggered landslides after the 2015 Gorkha earthquake in Nepal and provided information to relief and recovery officials as emergency operations were occurring, while supported by one of the largest-ever NASA-led campaigns of responsive satellite data acquisitions over a vast disaster zone.
Abstract: The Gorkha earthquake (M 7.8) on 25 April 2015 and later aftershocks struck South Asia, killing ~9,000 and damaging a large region. Supported by a large campaign of responsive satellite data acquisitions over the earthquake disaster zone, our team undertook a satellite image survey of the earthquakes’ induced geohazards in Nepal and China and an assessment of the geomorphic, tectonic, and lithologic controls on quake-induced landslides. Timely analysis and communication aided response and recovery and informed decision makers. We mapped 4,312 co-seismic and post-seismic landslides. We also surveyed 491 glacier lakes for earthquake damage, but found only 9 landslide-impacted lakes and no visible satellite evidence of outbursts. Landslide densities correlate with slope, peak ground acceleration, surface downdrop, and specific metamorphic lithologies and large plutonic intrusions.

338 citations

Journal ArticleDOI
TL;DR: By ensuring that the specific aim of the intervention, the scale of the desired biophysical effect and an awareness of a range of impacts guide the choice of tree species, location and density of tree placement, street trees can be an important tool for urban planners and designers in developing resilient and resourceful cities in an era of climatic change.
Abstract: Urban tree planting initiatives are being actively promoted as a planning tool to enable urban areas to adapt to and mitigate against climate change, enhance urban sustainability and improve human health and well-being. However, opportunities for creating new areas of green space within cities are often limited and tree planting initiatives may be constrained to kerbside locations. At this scale, the net impact of trees on human health and the local environment is less clear, and generalised approaches for evaluating their impact are not well developed.In this review, we use an urban ecosystems services framework to evaluate the direct, and locally-generated, ecosystems services and disservices provided by street trees. We focus our review on the services of major importance to human health and well-being which include 'climate regulation', 'air quality regulation' and 'aesthetics and cultural services'. These are themes that are commonly used to justify new street tree or street tree retention initiatives. We argue that current scientific understanding of the impact of street trees on human health and the urban environment has been limited by predominantly regional-scale reductionist approaches which consider vegetation generally and/or single out individual services or impacts without considering the wider synergistic impacts of street trees on urban ecosystems. This can lead planners and policymakers towards decision making based on single parameter optimisation strategies which may be problematic when a single intervention offers different outcomes and has multiple effects and potential trade-offs in different places.We suggest that a holistic approach is required to evaluate the services and disservices provided by street trees at different scales. We provide information to guide decision makers and planners in their attempts to evaluate the value of vegetation in their local setting. We show that by ensuring that the specific aim of the intervention, the scale of the desired biophysical effect and an awareness of a range of impacts guide the choice of i) tree species, ii) location and iii) density of tree placement, street trees can be an important tool for urban planners and designers in developing resilient and resourceful cities in an era of climatic change.

334 citations

Journal ArticleDOI
TL;DR: In this article, a sediment-trap study showed that in the Southern Ocean the shell weights of a surface-dwelling single-celled organism with a calcite shell are lower than pre-industrial values, probably as a result of increasing ocean acidity.
Abstract: The oceans are becoming more acidic as they absorb anthropogenic carbon dioxide—this may limit the ability of marine organisms to secrete carbonate. A sediment-trap study shows that in the Southern Ocean the shell weights of a surface-dwelling single-celled organism with a calcite shell are lower than pre-industrial values, probably as a result of increasing ocean acidity. Anthropogenic carbon dioxide has been accumulating in the oceans, lowering both the concentration of carbonate ions and the pH (ref. 1), resulting in the acidification of sea water. Previous laboratory experiments have shown that decreased carbonate ion concentrations cause many marine calcareous organisms to show reduced calcification rates2,3,4,5. If these results are widely applicable to ocean settings, ocean acidification could lead to ecosystem shifts. Planktonic foraminifera are single-celled calcite-secreting organisms that represent between 25 and 50% of the total open-ocean marine carbonate flux6 and influence the transport of organic carbon to the ocean interior7. Here we compare the shell weights of the modern foraminifer Globigerina bulloides collected from sediment traps in the Southern Ocean with the weights of shells preserved in the underlying Holocene-aged sediments. We find that modern shell weights are 30–35% lower than those from the sediments, consistent with reduced calcification today induced by ocean acidification. We also find a link between higher atmospheric carbon dioxide and low shell weights in a 50,000-year-long record obtained from a Southern Ocean marine sediment core. It is unclear whether reduced calcification will affect the survival of this and other species, but a decline in the abundance of foraminifera caused by acidification could affect both marine ecosystems and the oceanic uptake of atmospheric carbon dioxide.

334 citations

Journal ArticleDOI
TL;DR: The composition of nitrogen in Melbourne was broadly consistent with international data, and the level of dissolved inorganic nitrogen was higher in Melbourne than in the international literature, which has implications for stormwater management.

333 citations


Authors

Showing all 7633 results

NameH-indexPapersCitations
Eric N. Olson206814144586
Nicholas G. Martin1921770161952
Grant W. Montgomery157926108118
Paul Mitchell146137895659
James Whelan12878689180
Shaobin Wang12687252463
Graham D. Farquhar12436875181
Jie Jin Wang12071954587
Christos Pantelis12072356374
John J. McGrath120791124804
David B. Lindenmayer11995459129
Ashley I. Bush11656057009
Yong-Guan Zhu11568446973
Ary A. Hoffmann11390755354
David A. Hume11357359932
Network Information
Related Institutions (5)
University of Queensland
155.7K papers, 5.7M citations

92% related

University of Melbourne
174.8K papers, 6.3M citations

90% related

University of Sydney
187.3K papers, 6.1M citations

89% related

University of New South Wales
153.6K papers, 4.8M citations

89% related

Australian National University
109.2K papers, 4.3M citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202211
2021243
2020284
2019300
2018327
2017419