scispace - formally typeset
Search or ask a question
Institution

DECHEMA

NonprofitFrankfurt am Main, Germany
About: DECHEMA is a nonprofit organization based out in Frankfurt am Main, Germany. It is known for research contribution in the topics: Corrosion & Oxide. The organization has 756 authors who have published 1307 publications receiving 25693 citations.
Topics: Corrosion, Oxide, Coating, Catalysis, Alloy


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the versatile enzyme chloroperoxidase was used in a reaction system, based on a gas diffusion electrode, for enzymatic chlorinations due to an adjusted and continuous electro-generation of the co-substrate hydrogen peroxide.

35 citations

Journal ArticleDOI
TL;DR: In this paper, the laccase-mediator system (LMS) for the regeneration of oxidised nicotinamide co-factors was revisited to broaden the mediator scope.
Abstract: The laccase-mediator system (LMS) for the regeneration of oxidised nicotinamide co-factors was revisited to broaden the mediator scope. Among the 18 mediators screened, acetosyringone, syringaldehyde and caffeic acid excelled with respect to activity and stability under process conditions. The LMS based on the laccase from Myceliophthora thermophila and acetosyringone was further investigated and applied to promote the nicotinamide adenine dinucleotide (NAD+)-dependent oxidation of glucose as well as the oxidative lactonisation of 1,4-butanediol to the corresponding γ-butyrolactone.

35 citations

Journal ArticleDOI
A. Rahmel1
TL;DR: The following possible conditions for the simultaneous formation of oxide and sulfide on iron in oxygen and sulfur-containing gases are considered in this article : (1) simultaneous thermodynamic stability of sulfide and oxide; (2) temporal changes in gas composition; (3) intermediary cracking of the oxide film; (4) solubility and diffusion of sulfur in the oxide (lattice diffusion); and (5) kinetic conditions for simultaneous sulfide formation at the scale-gas interface.
Abstract: The following possible conditions for the simultaneous formation of oxide and sulfide on iron in oxygen and sulfur-containing gases are considered: (7) simultaneous thermodynamic stability of oxide and sulfide; (2) temporal changes in gas composition; (3) intermediary cracking of the oxide film; (4) solubility and diffusion of sulfur in the oxide (lattice diffusion); (5) kinetic conditions for simultaneous oxide and sulfide formation at the scale-gas interface.

34 citations

Journal ArticleDOI
TL;DR: The best cyclic-oxidation behavior and excellent resistance to spalling even at 1150°C were shown by a laboratory version of CMSX-4 containing between 10 and 60 ppm Y as discussed by the authors.
Abstract: Several commerical single-crystal superalloys (CMSX-2, CMSX-3, CMSX-4, CMSX-6, SRR 99) and some laboratory versions of one of them (CMSX-4) with various Y additions were investigated concerning their cyclic-oxidation resistance in air at 1000 and 1150°C. The investigations also included two materials (CMSX-6, SRR 99) with an RT-22 coating. Weight changes and acoustic emission were recorded up to 1000 cycles and scales, coatings, and substrates were characterized by metallography, SEM, and microprobe in postexperimental investigations. The best cyclic-oxidation behavior and excellent resistance to spalling even at 1150°C were shown by a laboratory version of CMSX-4 containing between 10 and 60 ppm Y. While at 1000°C interdiffusion can be taken as tolerable for the coated alloys, there is rapid degradation of the coating by interdiffusion at 1150°C.

34 citations

Journal ArticleDOI
TL;DR: In this paper, the scale spallation after oxidation in air occurs during cooling on TiAl, TiAl-C, and TiAlV at or close to the metal/scale interface when a critical scale thickness has been achieved.
Abstract: The cyclic-oxidation behavior of (in w/o) Ti-36Al, Ti-35Al-0.1C, Ti-35Al-1.4V-0.1C and Ti-35Al-5Nb-0.1C was studied between 800 and 1000° C in air. A few experiments were also performed in oxygen. Scale spallation after oxidation in air occurs during cooling on TiAl, TiAl-C, and TiAl-V at or close to the metal/scale interface when a critical scale thickness has been achieved. This process repeats and can lead to a stratified scale. These three materials form scales composed of an inward-growing fine-grain mixture of TiO2-Al2O3 and an outward-growing coarse-grain TiO2 layer or TiO2+Al2O3 mixture. The TiAl-Nb alloy had a significantly different behavior. The scale on this material grew very slowly because a protective Al2O3 layer formed at the metal/scale interface. This behavior resulted in much better resistance to spallation because the critical scale thickness was reached only after a much longer time, and is different from the behavior of the other three alloys. Oxidation in air leads to slight nitridation of the subsurface zone beneath the scale. In comparison to oxidation in air, oxidation in oxygen improves the cyclicoxidation behavior. Whereas the scale formed in air was uniformly thick over the entire surface, the scale grown in oxygen varied locally in structure and thickness. A large fraction of the surface was covered with a thin Al2O3 layer, while the remaining part formed a two-layer scale similar to that formed in air. The results are discussed briefly in the light of a recently published model for scale spallation under compressive stress, however, quantitative estimations are not possible due to a lack of relevant data.

34 citations


Authors

Showing all 760 results

NameH-indexPapersCitations
Wolf B. Frommer10534530918
Michael W. Anderson10180863603
João Rocha93152149472
Martin Muhler7760625850
Michael Hunger6029511370
Ivars Neretnieks442247159
Michael Schütze403436311
Jens Schrader381294239
Roland Dittmeyer312063762
Lei Li291984003
Dirk Holtmann291073033
Lasse Greiner26741994
Klaus-Michael Mangold23571590
A. Rahmel23591967
Gerhard Kreysa22781305
Network Information
Related Institutions (5)
Bayer
49.5K papers, 673.8K citations

81% related

Karlsruhe Institute of Technology
82.1K papers, 2.1M citations

79% related

Forschungszentrum Jülich
35.6K papers, 994.1K citations

78% related

University of Stuttgart
56.3K papers, 1.3M citations

78% related

RWTH Aachen University
96.2K papers, 2.5M citations

77% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20231
20227
202145
202053
201949
201844