scispace - formally typeset
Search or ask a question
Institution

DECHEMA

NonprofitFrankfurt am Main, Germany
About: DECHEMA is a nonprofit organization based out in Frankfurt am Main, Germany. It is known for research contribution in the topics: Corrosion & Oxide. The organization has 756 authors who have published 1307 publications receiving 25693 citations.
Topics: Corrosion, Oxide, Coating, Catalysis, Alloy


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, two molecular nitrogen transport mechanisms based on wrinkling and micro-cracking-healing were proposed and discussed, and the results indicated that a scale, free of physical defects, protects the substrate from nitridation.

9 citations

Journal ArticleDOI
TL;DR: In this paper, a new model concept for predicting mechanical oxide scale failure is applied to Al2O3, Cr2O2, Fe3O4 and NiO, and calculated critical strain values are plotted versus the physical defect size using a simplified version of the original h-w concept.
Abstract: A new model concept for predicting mechanical oxide scale failure is applied to Al2O3, Cr2O3, Fe3O4 and NiO. The calculated critical strain values are plotted versus the physical defect size using a simplified version of the original h-w-concept. A limited number of experimental data existing in the literature were entered into the plots and yield satisfactory agreement with the model data. Future efforts should focus on extending the experimental data basis and converting these data into h-values for the model.

9 citations

Journal ArticleDOI
TL;DR: In this paper, the authors propose a Masnahmenpaket vorzulegen with dem Ziel, alle Moglichkeiten zur Gewahrleistung des +2°C-Zieles auszuschopfen.
Abstract: Der durch anthropogene Emissionen von CO2 und anderen klimarelevanten Gasen verursachte Klimawandel ist Gegenstand einer intensiven offentlichen Debatte Die politischen Bemuhungen, den Klimawandel zu begrenzen, wurden intensiviert, doch bei allen Bemuhungen um die Reduzierung von CO2-Emissionen fuhren die diskutierten Szenarien zum Klimawandel zu einer Erhohung der globalen Durchschnittstemperatur Selbst fur das gunstigste Szenario werden +2 °C bis 2100 erwartet Das Europaische Parlament verabschiedete eine Resolution, die die Europaische Kommission auffordert, ein umfangreiches Masnahmenpaket vorzulegen mit dem Ziel, alle Moglichkeiten zur Gewahrleistung des +2 °C-Zieles auszuschopfen

9 citations

Reference EntryDOI
15 Jun 2000
TL;DR: In this article, the authors present a comparison of integrated and additive environmental protection in the chemical industry and highlight the limitations of integrated environmental protection and energy saving in the production of chemical products.
Abstract: The article contains sections titled: 1. Production-Integrated Environmental Protection in the Chemical Industry 1.1. Introduction 1.2. Formation of Residues in Chemical Processes 1.3. Environmental Concepts in the Chemical Industry 1.3.1. The Concept of Integrated Environmental Protection 1.3.2. Environmental Protection in Research and Development 1.3.3. Integrated and Additive Concepts of Environmental Protection 1.3.4. Comparison of Integrated and Additive Environmental Protection 1.4. Limitations of Production-Integrated Environmental Protection 1.4.1. Technical Limitations 1.4.2. Economic Limitations 1.5. Effect of Production-Integrated Environmental Protection 1.6. Costs of Integrated Measures 2. Examples of Production-Integrated Environmental Protection in the Chemical Industry 2.1. Introduction 2.2. Selected Examples 2.2.1. Examples from Hoechst 2.2.1.1. Recovery and Utilization of Residues in the Production of Viscose Staple Fiber 2.2.1.2. Recovery of Methanol and Acetic Acid in Poly(Vinyl Alcohol) Production 2.2.1.3. Acetylation without Contamination of Wastewater 2.2.1.4. Reutilization Plant for Organohalogen Compounds 2.2.1.5. Vacuum Technology for Closed Production Cycles 2.2.1.6. Utilization of Exhaust Gases and Liquid Residues of Chlorination Processes for Production of Clean Hydrochloric Acid 2.2.1.7. Production of Neopentyl Glycol: Higher Yield by Internal Recycling 2.2.1.8. Optimization of Ester Waxoil Production and Recovery of Auxiliary Products 2.2.1.9. Biochemical Production of 7-Aminocephalosporanic Acid 2.2.2. Examples from Bayer 2.2.2.1. Avoidance of Wastewater and Residues in the Production of H Acid (1-Amino-8-hydroxynaphthalene-3,6-disulfonic acid) 2.2.2.2. High-Yield Production of Alkanesulfonates by Means of Membrane Technology 2.2.2.3. Selective Chlorination of Toluene in the para-Position 2.2.2.4. Production of Naphthalenedisulfonic Acid with Closed Recycling of Auxiliaries 2.2.2.5. Avoiding Residues in Dye Production by Using Membrane Processes 2.2.2.6. Fuel Replacement in Sewage Sludge Combustion by Utilization of Chlorinated Hydrocarbon Side Products 2.2.3. Examples from BASF 2.2.3.1. Emission Reduction in Industrial Power Plants at Chemical Plant Sites by Means of Optimized Cogeneration 2.2.3.2. Closed-Cycle Wittig Reaction 2.2.4. Integrated Environmental Protection and Energy Saving in the Production of Vinyl Chloride (Example from Wacker Chemie) 2.2.5. Examples from Huls 2.2.5.1. Integrated Environmental Protection in Cumene Production 2.2.5.2. Production of Acetylene by the Huls Plasma Arc Process 2.2.6. Low-Residue Process for Titanium Dioxide Production (Example from Kronos International) 2.2.7. Reduction of Waste Production and Energy Consumption in the Production of Fatty Acid Methyl Esters (Example from Henkel) 2.2.8. Integrated Environmental Protection in the Production of Vitamins (Example from F. Hoffmann-La Roche) 2.2.9. Production of Pure Naphthalene without Residues-Replacement of Chemical Purification by Optimized Multiple Crystallization (Example from VFT) 2.2.10. Improvements in the Polypropylene Production Process (Example from Shell) 2.2.11. The Zero-Residue Refinery Using the Shell Gasification Process (Shell - Lurgi Example) 2.2.12. Neutral Salt Splitting with the Use of Hydrogen Depolarized Anodes (HydrinaTechnology, Example from De Nora Permelec) 2.2.13. Ultrapure Isopropanol Purification and Recycling System (Example from Mitsubishi Chemical) 2.2.14. Examples from Boehringer Mannheim 2.2.14.1. Biocatalytic Splitting of Penicillin 2.2.14.2. Production of Diagnostic Reagents by Means of Genetic Engineering: Glucose-6-Phosphate Dehydrogenase and α-Glucosidase 3. Acknowledgement

9 citations


Authors

Showing all 760 results

NameH-indexPapersCitations
Wolf B. Frommer10534530918
Michael W. Anderson10180863603
João Rocha93152149472
Martin Muhler7760625850
Michael Hunger6029511370
Ivars Neretnieks442247159
Michael Schütze403436311
Jens Schrader381294239
Roland Dittmeyer312063762
Lei Li291984003
Dirk Holtmann291073033
Lasse Greiner26741994
Klaus-Michael Mangold23571590
A. Rahmel23591967
Gerhard Kreysa22781305
Network Information
Related Institutions (5)
Bayer
49.5K papers, 673.8K citations

81% related

Karlsruhe Institute of Technology
82.1K papers, 2.1M citations

79% related

Forschungszentrum Jülich
35.6K papers, 994.1K citations

78% related

University of Stuttgart
56.3K papers, 1.3M citations

78% related

RWTH Aachen University
96.2K papers, 2.5M citations

77% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20231
20227
202145
202053
201949
201844