scispace - formally typeset
Search or ask a question
Institution

DECHEMA

NonprofitFrankfurt am Main, Germany
About: DECHEMA is a nonprofit organization based out in Frankfurt am Main, Germany. It is known for research contribution in the topics: Corrosion & Oxide. The organization has 756 authors who have published 1307 publications receiving 25693 citations.
Topics: Corrosion, Oxide, Coating, Catalysis, Alloy


Papers
More filters
Journal ArticleDOI
TL;DR: A fed-batch approach using polypropylene glycol 1200 as in situ extractant and the precursor in a saturated concentration led to the highest 2-PE productivity reported for a bioprocess so far.
Abstract: The natural aroma chemicals 2-phenylethanol (2-PE) and 2-phenylethylacetate (2-PEAc) are of high industrial relevance and can be produced from L-phenylalanine in a yeast-based process with growth-associated product formation. Due to product inhibition, in situ product removal is mandatory to obtain economically interesting concentrations. A fed-batch approach using polypropylene glycol 1200 as in situ extractant and the precursor in a saturated concentration led to the highest 2-PE productivity reported for a bioprocess so far. With Kluyveromyces marxianus CBS 600, 26.5 g/l 2-PE and 6.1 g/l 2-PEAc in the organic phase were obtained, corresponding to space-time yields of 0.33 and 0.08 g/l h, respectively.

121 citations

Journal ArticleDOI
E. Heitz1
TL;DR: In this article, basic processes, parameters, and mechanisms are discussed with special reference to hydrodynamics, mechanical actions of one-and two-phase flows, transport processes, electrochemical step.
Abstract: Basic processes, parameters, and mechanisms are discussed with special reference to hydrodynamics, mechanical actions of one- and two-phase flows, transport processes, electrochemical step

120 citations

Journal ArticleDOI
TL;DR: In this paper, a support with a porous layer of yttria-stabilized zirconia (YSZ) was used as a barrier against intermetallic diffusion between the palladium membrane and the metallic support.

119 citations

Journal ArticleDOI
TL;DR: In this article, it was shown that the dusting mechanism of austenitic materials like high alloy Cr-Ni steels and Ni base materials is one of graphite nucleation and growth within the near surface metal.
Abstract: Recent experimental investigations have widened the understanding of metal dusting significantly. Microscopic observations have been used to dissect dusting mechanisms. Iron dusts by growing a cementite surface scale, which catalyses graphite nucleation and growth. The resulting volume expansion leads to cementite disintegration. Cementite formation on iron can be suppressed by alloying with germanium. Nonetheless, dusting occurs via the direct growth of graphite into the metal, producing nanoparticles offerrite.This process is faster, because carbon diffusion is more rapid in α-Fe than in Fe 3 C. Austenitic materials cannot form cementite, and dust via formation of graphite at external surfaces and interior grain boundaries. The coke deposit consists of carbon nanotubes with austenite particles at their tips, or graphite particles encapsulating austenite. TEM studies demonstrate the inward growth of graphite within the metal interior. It is therefore concluded that the dusting mechanism of austenitic materials like high alloy Cr-Ni steels and Ni base materials is one of graphite nucleation and growth within the near surface metal. In all alloys examined, both ferritic and austenitic, the principal mass transfer process is inward diffusion of carbon. Alloying iron with nickel leads to a transformation from one mechanism with carbide formation to the other without. Copper alloying in nickel and high nickel content stainless steels strongly suppresses graphite nucleation, as does also an intermetallic Ni-Sn phase, thereby reducing greatly the overall dusting rate. A surface layer of intermetallic Ni-Sn Fe-base materials facilitates the formation of a Fe 3 SnC surface scale which also prevents coking and metal dusting. Current understanding of the roles of temperature, gas composition and surface oxides on dusting rates are summarised. Finally, protection against metal dusting by coatings is discussed in terms of their effects on catalysis of carbon deposition, and on protective oxide formation.

118 citations

Journal ArticleDOI
Yan Huang1, Roland Dittmeyer1
TL;DR: In this article, three porous barriers between the palladium membrane and the sinter-metal support were applied as porous barriers to prevent intermetallic diffusion, and the final membranes were characterized by light-optical microscopy, scanning electron microscopy (SEM), capillary flow porometry, in terms of the adhesion of the membrane layer, its gastightness, and by hydrogen permeation measurements.

118 citations


Authors

Showing all 760 results

NameH-indexPapersCitations
Wolf B. Frommer10534530918
Michael W. Anderson10180863603
João Rocha93152149472
Martin Muhler7760625850
Michael Hunger6029511370
Ivars Neretnieks442247159
Michael Schütze403436311
Jens Schrader381294239
Roland Dittmeyer312063762
Lei Li291984003
Dirk Holtmann291073033
Lasse Greiner26741994
Klaus-Michael Mangold23571590
A. Rahmel23591967
Gerhard Kreysa22781305
Network Information
Related Institutions (5)
Bayer
49.5K papers, 673.8K citations

81% related

Karlsruhe Institute of Technology
82.1K papers, 2.1M citations

79% related

Forschungszentrum Jülich
35.6K papers, 994.1K citations

78% related

University of Stuttgart
56.3K papers, 1.3M citations

78% related

RWTH Aachen University
96.2K papers, 2.5M citations

77% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20231
20227
202145
202053
201949
201844