scispace - formally typeset
Open AccessJournal ArticleDOI

FCC-hh: The Hadron Collider

A. Abada, +1499 more
- 01 Jul 2019 - 
- Vol. 228, Iss: 4, pp 755-1107
TLDR
In this paper, the authors describe the detailed design and preparation of a construction project for a post-LHC circular energy frontier collider in collaboration with national institutes, laboratories and universities worldwide, and enhanced by a strong participation of industrial partners.
Abstract
Particle physics has arrived at an important moment of its history. The discovery of the Higgs boson, with a mass of 125 GeV, completes the matrix of particles and interactions that has constituted the “Standard Model” for several decades. This model is a consistent and predictive theory, which has so far proven successful at describing all phenomena accessible to collider experiments. However, several experimental facts do require the extension of the Standard Model and explanations are needed for observations such as the abundance of matter over antimatter, the striking evidence for dark matter and the non-zero neutrino masses. Theoretical issues such as the hierarchy problem, and, more in general, the dynamical origin of the Higgs mechanism, do likewise point to the existence of physics beyond the Standard Model. This report contains the description of a novel research infrastructure based on a highest-energy hadron collider with a centre-of-mass collision energy of 100 TeV and an integrated luminosity of at least a factor of 5 larger than the HL-LHC. It will extend the current energy frontier by almost an order of magnitude. The mass reach for direct discovery will reach several tens of TeV, and allow, for example, to produce new particles whose existence could be indirectly exposed by precision measurements during the earlier preceding e+e– collider phase. This collider will also precisely measure the Higgs self-coupling and thoroughly explore the dynamics of electroweak symmetry breaking at the TeV scale, to elucidate the nature of the electroweak phase transition. WIMPs as thermal dark matter candidates will be discovered, or ruled out. As a single project, this particle collider infrastructure will serve the world-wide physics community for about 25 years and, in combination with a lepton collider (see FCC conceptual design report volume 2), will provide a research tool until the end of the 21st century. Collision energies beyond 100 TeV can be considered when using high-temperature superconductors. The European Strategy for Particle Physics (ESPP) update 2013 stated “To stay at the forefront of particle physics, Europe needs to be in a position to propose an ambitious post-LHC accelerator project at CERN by the time of the next Strategy update”. The FCC study has implemented the ESPP recommendation by developing a long-term vision for an “accelerator project in a global context”. This document describes the detailed design and preparation of a construction project for a post-LHC circular energy frontier collider “in collaboration with national institutes, laboratories and universities worldwide”, and enhanced by a strong participation of industrial partners. Now, a coordinated preparation effort can be based on a core of an ever-growing consortium of already more than 135 institutes worldwide. The technology for constructing a high-energy circular hadron collider can be brought to the technology readiness level required for constructing within the coming ten years through a focused R&D programme. The FCC-hh concept comprises in the baseline scenario a power-saving, low-temperature superconducting magnet system based on an evolution of the Nb3Sn technology pioneered at the HL-LHC, an energy-efficient cryogenic refrigeration infrastructure based on a neon-helium (Nelium) light gas mixture, a high-reliability and low loss cryogen distribution infrastructure based on Invar, high-power distributed beam transfer using superconducting elements and local magnet energy recovery and re-use technologies that are already gradually introduced at other CERN accelerators. On a longer timescale, high-temperature superconductors can be developed together with industrial partners to achieve an even more energy efficient particle collider or to reach even higher collision energies.The re-use of the LHC and its injector chain, which also serve for a concurrently running physics programme, is an essential lever to come to an overall sustainable research infrastructure at the energy frontier. Strategic R&D for FCC-hh aims at minimising construction cost and energy consumption, while maximising the socio-economic impact. It will mitigate technology-related risks and ensure that industry can benefit from an acceptable utility. Concerning the implementation, a preparatory phase of about eight years is both necessary and adequate to establish the project governance and organisation structures, to build the international machine and experiment consortia, to develop a territorial implantation plan in agreement with the host-states’ requirements, to optimise the disposal of land and underground volumes, and to prepare the civil engineering project. Such a large-scale, international fundamental research infrastructure, tightly involving industrial partners and providing training at all education levels, will be a strong motor of economic and societal development in all participating nations. The FCC study has implemented a set of actions towards a coherent vision for the world-wide high-energy and particle physics community, providing a collaborative framework for topically complementary and geographically well-balanced contributions. This conceptual design report lays the foundation for a subsequent infrastructure preparatory and technical design phase.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Neutrinoless double beta decay versus other probes of heavy sterile neutrinos

TL;DR: In this article, a phenomenological parametrisation of the simplified one-generation seesaw model with one active and two sterile neutrino states in terms of experimentally measurable quantities, such as active-sterile neutrinos mixing angles, CP phases, masses and mass splittings, was introduced.
Journal ArticleDOI

Parton showers beyond leading logarithmic accuracy

TL;DR: New classes of shower are introduced, for final-state radiation, that satisfy the main elements of these criteria in the widely used large-N_{C} limit, and are demonstrated' agreement with all-order analytical next-to-leading logarithmic calculations for a range of observables.
Journal ArticleDOI

Learning representations of irregular particle-detector geometry with distance-weighted graph networks

TL;DR: In this paper, the authors explore the use of graph networks to deal with irregular geometry detectors in the context of particle reconstruction, and introduce two distance-weighted graph network architectures, dubbed GarNet and GravNet layers, and apply them to a typical particle reconstruction task.
Journal ArticleDOI

Muon colliders to expand frontiers of particle physics

TL;DR: A new international collaboration is forming to make such a muon collider a reality as discussed by the authors, which is challenging to realize due to its high computational complexity and the high computational overhead.
References
More filters
Journal ArticleDOI

The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations

TL;DR: MadGraph5 aMC@NLO as discussed by the authors is a computer program capable of handling all these computations, including parton-level fixed order, shower-matched, merged, in a unified framework whose defining features are flexibility, high level of parallelisation and human intervention limited to input physics quantities.
Journal ArticleDOI

The anti-$k_t$ jet clustering algorithm

TL;DR: The anti-k-t algorithm as mentioned in this paper behaves like an idealised cone algorithm, in that jets with only soft fragmentation are conical, active and passive areas are equal, the area anomalous dimensions are zero, the non-global logarithms are those of a rigid boundary and the Milan factor is universal.
Journal ArticleDOI

A Brief Introduction to PYTHIA 8.1

TL;DR: PYTHIA 8 represents a complete rewrite in C++, and does not yet in every respect replace the old code, but does contain some new physics aspects that should make it an attractive option especially for LHC physics studies.
ReportDOI

FLUKA: A Multi-Particle Transport Code

TL;DR: The 2005 version of the Fluka particle transport code is described in this article, where the basic notions, modular structure of the system, and an installation and beginner's guide are described.
Journal ArticleDOI

ALPGEN, a generator for hard multiparton processes in hadronic collisions

TL;DR: The ALPGEN as discussed by the authors event generator performs the calculation of exact matrix elements for a large set of parton-level processes of interest in the study of the Tevatron and LHC data.
Related Papers (5)

Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC

Georges Aad, +2967 more
- 17 Sep 2012 - 

Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC

S. Chatrchyan, +2863 more
- 17 Sep 2012 - 

APS : Review of Particle Physics, 2018-2019

Masaharu Tanabashi, +230 more
- 17 Aug 2018 -